modin.pandas.Series.quantile¶
- Series.quantile(q=0.5, interpolation='linear') Union[float, Series][source]¶
- Return value at the given quantile. - Parameters:
- q (float or array-like of float, default 0.5) – Value between 0 <= q <= 1, the quantile(s) to compute. Currently unsupported if q is a Snowpandas DataFrame or Series. 
- interpolation ({"linear", "lower", "higher", "midpoint", "nearest"}, default "linear") – - Specifies the interpolation method to use if a quantile lies between two data points i and j: - linear: i + (j - i) * fraction, where fraction is the fractional part of the index surrounded by i and j. 
- lower: i. 
- higher: j. 
- nearest: i or j, whichever is nearest. 
- midpoint: (i + j) / 2. 
 - Snowpark pandas currently only supports “linear” and “nearest”. 
 
- Returns:
- If - qis an array, a Series will be returned where the index is- qand the values are the quantiles. If- qis a float, the float value of that quantile will be returned.
- Return type:
- float or Series 
 - Examples - >>> s = pd.Series([1, 2, 3, 4]) - With a scalar q: - >>> s.quantile(.5) 2.5 - With a list q: - >>> s.quantile([.25, .5, .75]) 0.25 1.75 0.50 2.50 0.75 3.25 dtype: float64 - Values considered NaN do not affect the result: - >>> s = pd.Series([None, 0, 25, 50, 75, 100, np.nan]) >>> s.quantile([0, 0.25, 0.5, 0.75, 1]) 0.00 0.0 0.25 25.0 0.50 50.0 0.75 75.0 1.00 100.0 dtype: float64