SnowConvert AI: Data validation

SnowConvert AI, as part of the end-to-end migration experience, provides the capability to validate your migrated data to ensure that both the structure of the data and the data itself match the original source. This data validation feature is available for SQL Server databases.

Data validation modes

To ensure that your data is successfully migrated to Snowflake, the data validation employs two distinct validation levels: schema validation and metrics validation.

Schema validation

스키마 유효성 검사에서는 마이그레이션된 테이블의 기본 구조가 Snowflake에서 유지되는지 확인합니다. 다음 테이블 특성의 유효성을 검사합니다.

  • 테이블 이름

  • 열 이름

  • 각 열의 순서 위치

  • 데이터 타입

  • 텍스트 열의 최대 문자 길이

  • 숫자 열의 전체 자릿수 및 소수 자릿수

  • 행 수

Metrics validation

Metrics validation confirms that the data itself matches the original source. Metrics validation compares aggregate metrics between each original table and the corresponding new Snowflake table. Although the specific metrics can vary by column data type, metrics validation evaluates the following items:

  • 최소값

  • 최대값

  • Average

  • Null 개수

  • 고유 값 개수

  • 표준 편차

  • 분산

Validate migrated data

경고

For accurate validation and to avoid false negatives, don’t alter the migrated data during the validation process.

For SQL Server migrations, validation includes an optional step within the process. This step validates the data after you use SnowConvert AI to move it.

전제 조건

This feature requires a version of Python that meets the following requirements to be installed and available in your PATH:

  • Greater than or equal to 3.10.

  • Lower than or equal to 3.13.

To verify that a supported Python version is available in your PATH:

  1. In your terminal (or Command Prompt on Windows), run python --version.

  2. Confirm that the Python version meets the requirements that are mentioned earlier.

Complete the following steps to validate your migrated data:

  1. In SnowConvert AI, open Validate data in one of the following ways:

    • Complete the data migration process, and then select Go to data validation.

    • In your project, select Data validation.

  2. On the Connect to source database page, complete the fields with the connection information for your source database, select Test connection, and then select Continue.

  3. Select the objects that you want to validate.

    The following image is an example of the page:

  4. Select Validate data.

    The validation process starts.

    When validation completes successfully and no differences are found, SnowConvert AI displays a message confirming that no differences were found.

    If differences are found in the migrated data, SnowConvert AI generates a report and displays a summary of the discrepancies in the tables.

    The following image is an example of a validation report:

    Also, a CSV file report is generated so you can visualize and share it.

    유효성 검사 결과는 다음 3가지 카테고리로 분류됩니다.

    카테고리

    설명

    값은 소스 데이터베이스와 Snowflake 간에 정확히 일치합니다.

    Snowflake table has minor differences that don’t affect the data, such as higher numeric precision.

    Values don’t match between the original database and the Snowflake database.

    Finally, you can open the reports folder to access the generated CSV reports: