snowflake.core.cortex.embed_service.EmbedRequestΒΆ
- class snowflake.core.cortex.embed_service.EmbedRequest(*, model: Annotated[str, Strict(strict=True)], text: Annotated[List[Annotated[str, Strict(strict=True)]], MinLen(min_length=1)], provisioned_throughput_id: Annotated[str, Strict(strict=True)] | None = None)ΒΆ
- Bases: - BaseModel- A model object representing the EmbedRequest resource. - Constructs an object of type EmbedRequest with the provided properties. - Parameters:
- model (str) β - Identifier of the model to use for generating embeddings. Refer to Snowflake documentation for the list of supported models. - Examples:
- snowflake-arctic-embed-m 
- snowflake-arctic-embed-m-v1.5 
 
 
- text (list[str]) β An array of input texts for which vector embeddings will be calculated. Example: [βHello worldβ, βMachine learning is fascinatingβ] 
- provisioned_throughput_id (str, optional) β The provisioned throughput ID to be used with the request. 
 
 - Create a new model by parsing and validating input data from keyword arguments. - Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model. - self is explicitly positional-only to allow self as a field name. - Methods - classmethod from_dict(obj: dict) EmbedRequestΒΆ
- Create an instance of EmbedRequest from a dict. 
 - classmethod from_json(json_str: str) EmbedRequestΒΆ
- Create an instance of EmbedRequest from a JSON string. 
 - to_dict(hide_readonly_properties: bool = False) dict[str, Any]ΒΆ
- Returns the dictionary representation of the model using alias. 
 - to_dict_without_readonly_properties() dict[str, Any]ΒΆ
- Return the dictionary representation of the model without readonly properties. 
 - to_json() strΒΆ
- Returns the JSON representation of the model using alias. 
 - to_str() strΒΆ
- Returns the string representation of the model using alias.