modin.pandas.DataFrame.count¶
- DataFrame.count(axis: Axis | None = 0, numeric_only: bool = False)[source]¶
Count non-NA cells for each column or row.
The values None, NaN, NaT are considered NA.
- Parameters:
axis ({0 or 'index', 1 or 'columns'}, default 0) – If 0 or ‘index’ counts are generated for each column. If 1 or ‘columns’ counts are generated for each row. Not supported yet.
numeric_only (bool, default False) – Include only float, int or boolean data.
- Returns:
For each column/row the number of non-NA/null entries.
- Return type:
Snowpark pandas
Series
See also
Series.count
Number of non-NA elements in a Series.
DataFrame.value_counts
Count unique combinations of columns.
DataFrame.shape
Number of DataFrame rows and columns (including NA elements).
DataFrame.isna
Boolean same-sized DataFrame showing places of NA elements.
Examples
Constructing DataFrame from a dictionary:
>>> df = pd.DataFrame({"Person": ... ["John", "Myla", "Lewis", "John", "Myla"], ... "Age": [24., np.nan, 21., 33, 26], ... "Single": [False, True, True, True, False]}) >>> df Person Age Single 0 John 24.0 False 1 Myla NaN True 2 Lewis 21.0 True 3 John 33.0 True 4 Myla 26.0 False
Notice the uncounted NA values:
>>> df.count() Person 5 Age 4 Single 5 dtype: int64