modin.pandas.DataFrame.info¶
- DataFrame.info(verbose: bool | None = None, buf: IO[str] | None = None, max_cols: int | None = None, memory_usage: bool | str | None = None, show_counts: bool | None = None, null_counts: bool | None = None)[source]¶
Print a concise summary of the
DataFrame
. Snowflake DataFrames mirror the output of pandas df.info but with some specific limitations ( zeroed memory usage, no index information ).- Parameters:
verbose (bool, optional) – Whether to print the full summary. By default, the setting in
pandas.options.display.max_info_columns
is followed.buf (writable buffer, defaults to sys.stdout) – Where to send the output. By default, the output is printed to sys.stdout. Pass a writable buffer if you need to further process the output.
max_cols (int, optional) – When to switch from the verbose to the truncated output. If the DataFrame has more than max_cols columns, the truncated output is used. By default, the setting in
pandas.options.display.max_info_columns
is used.memory_usage (bool, str, optional) – Displays 0 for memory usage, since the memory usage of a snowflake dataframe is remote and partially indeterminant.
show_counts (bool, optional) – Whether to show the non-null counts. By default, this is shown only if the DataFrame is smaller than
pandas.options.display.max_info_rows
andpandas.options.display.max_info_columns
. A value of True always shows the counts, and False never shows the counts.
- Returns:
This method prints a summary of a DataFrame and returns None.
- Return type:
None
Examples
>>> df = pd.DataFrame({'COL1': [1, 2, 3], ... 'COL2': ['A', 'B', 'C']})
>>> df.info() <class 'snowflake.snowpark.modin.pandas.dataframe.DataFrame'> SnowflakeIndex Data columns (total 2 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 COL1 3 non-null int64 1 COL2 3 non-null object dtypes: int64(1), object(1) memory usage: 0.0 bytes