modin.pandas.DataFrame.sum¶
- DataFrame.sum(axis: Axis | None = None, skipna: bool = True, numeric_only: bool = False, min_count: int = 0, **kwargs: Any)[source]¶
Return the sum of the values over the requested axis.
This is equivalent to the method numpy.sum.
- Parameters:
axis ({index (0), columns (1)}) – Axis for the function to be applied on. For Series this parameter is unused and defaults to 0.
skipna (bool, default True) – Exclude NA/null values when computing the result.
numeric_only (bool, default False) – If True, Include only float, int, boolean columns. Not implemented for Series.
min_count (int, default 0) – The required number of valid values to perform the operation. If fewer than min_count non-NA values are present the result will be NA.
**kwargs – Additional keyword arguments to be passed to the function.
- Return type:
Examples
>>> idx = pd.MultiIndex.from_arrays([ ... ['warm', 'warm', 'cold', 'cold'], ... ['dog', 'falcon', 'fish', 'spider']], ... names=['blooded', 'animal']) >>> s = pd.Series([4, 2, 0, 8], name='legs', index=idx) >>> s blooded animal warm dog 4 falcon 2 cold fish 0 spider 8 Name: legs, dtype: int64
>>> s.sum() 14
By default, the sum of an empty or all-NA Series is
0
.>>> pd.Series([], dtype="float64").sum() # min_count=0 is the default 0.0
This can be controlled with the
min_count
parameter. For example, if you’d like the sum of an empty series to be NaN, passmin_count=1
.>>> pd.Series([], dtype="float64").sum(min_count=1) nan
Thanks to the
skipna
parameter,min_count
handles all-NA and empty series identically.>>> pd.Series([np.nan]).sum() 0.0
>>> pd.Series([np.nan]).sum(min_count=1) nan