- Categories:
Window functions (General)
CONDITIONAL_TRUE_EVENT¶
Returns a window event number for each row within a window partition based on the result of the boolean argument
expr1
. The number starts from 0 and is incremented by 1 for each row on which the expr1
evaluates
to true.
One use of this function is to sessionize window partitions. For example, in click stream data, it can be used to determine whether a user has started a new session by checking whether the last event was longer ago than a threshold.
Syntax¶
CONDITIONAL_TRUE_EVENT( <expr1> ) OVER ( [ PARTITION BY <expr2> ] ORDER BY <expr3> )
Arguments¶
expr1
This is a boolean expression that changes the window event number value when it evaluates true.
expr2
This is the optional expression to partition by.
expr3
This is the expression to order by within each partition.
Usage notes¶
The conditional expression
expr1
can contain the rank-related functions LAG and LEAD, which allow us to build more expressive windows. If used, these functions have to use the same OVER specification as the CONDITIONAL_TRUE_EVENT.
Examples¶
The first example illustrates that:
The number within a partition increments each time the specified column is TRUE (non-zero in this case).
NULL values are not considered a TRUE value.
The number starts over at 0 for each partition.
Create and load the table:
CREATE TABLE table1 (province VARCHAR, o_col INTEGER, o2_col INTEGER); INSERT INTO table1 (province, o_col, o2_col) VALUES ('Alberta', 0, 10), ('Alberta', 0, 10), ('Alberta', 13, 10), ('Alberta', 13, 11), ('Alberta', 14, 11), ('Alberta', 15, 12), ('Alberta', NULL, NULL), ('Manitoba', 30, 30);
Query the table:
SELECT province, o_col, CONDITIONAL_TRUE_EVENT(o_col) OVER (PARTITION BY province ORDER BY o_col) AS true_event FROM table1 ORDER BY province, o_col ; +----------+-------+------------+ | PROVINCE | O_COL | TRUE_EVENT | |----------+-------+------------| | Alberta | 0 | 0 | | Alberta | 0 | 0 | | Alberta | 13 | 1 | | Alberta | 13 | 2 | | Alberta | 14 | 3 | | Alberta | 15 | 4 | | Alberta | NULL | 4 | | Manitoba | 30 | 1 | +----------+-------+------------+
The next example shows that:
expr1
can be an expression other than a column. This query uses the expressiono_col > 20
, and the output of the query shows when the value in o_col changes from a value less than or equal to 20 to a value greater than 20.expr3
does not need to matchexpr1
. In other words, the expression in the ORDER BY sub-clause of the OVER clause does not need to match the expression in the CONDITIONAL_TRUE_EVENT function.Query the table:
SELECT province, o_col, CONDITIONAL_TRUE_EVENT(o_col) OVER (PARTITION BY province ORDER BY o_col) AS true_event, CONDITIONAL_TRUE_EVENT(o_col > 20) OVER (PARTITION BY province ORDER BY o_col) AS true_event_gt_20 FROM table1 ORDER BY province, o_col ; +----------+-------+------------+------------------+ | PROVINCE | O_COL | TRUE_EVENT | TRUE_EVENT_GT_20 | |----------+-------+------------+------------------| | Alberta | 0 | 0 | 0 | | Alberta | 0 | 0 | 0 | | Alberta | 13 | 1 | 0 | | Alberta | 13 | 2 | 0 | | Alberta | 14 | 3 | 0 | | Alberta | 15 | 4 | 0 | | Alberta | NULL | 4 | 0 | | Manitoba | 30 | 1 | 1 | +----------+-------+------------+------------------+
The next example compares CONDITIONAL_CHANGE_EVENT and CONDITIONAL_TRUE_EVENT:
SELECT province, o_col, CONDITIONAL_CHANGE_EVENT(o_col) OVER (PARTITION BY province ORDER BY o_col) AS change_event, CONDITIONAL_TRUE_EVENT(o_col) OVER (PARTITION BY province ORDER BY o_col) AS true_event FROM table1 ORDER BY province, o_col ; +----------+-------+--------------+------------+ | PROVINCE | O_COL | CHANGE_EVENT | TRUE_EVENT | |----------+-------+--------------+------------| | Alberta | 0 | 0 | 0 | | Alberta | 0 | 0 | 0 | | Alberta | 13 | 1 | 1 | | Alberta | 13 | 1 | 2 | | Alberta | 14 | 2 | 3 | | Alberta | 15 | 3 | 4 | | Alberta | NULL | 3 | 4 | | Manitoba | 30 | 0 | 1 | +----------+-------+--------------+------------+
This example also compares CONDITIONAL_CHANGE_EVENT and CONDITIONAL_TRUE_EVENT:
CREATE TABLE borrowers ( name VARCHAR, status_date DATE, late_balance NUMERIC(11, 2), thirty_day_late_balance NUMERIC(11, 2) ); INSERT INTO borrowers (name, status_date, late_balance, thirty_day_late_balance) VALUES -- Pays late frequently, but catches back up rather than falling further -- behind. ('Geoffrey Flake', '2018-01-01'::DATE, 0.0, 0.0), ('Geoffrey Flake', '2018-02-01'::DATE, 1000.0, 0.0), ('Geoffrey Flake', '2018-03-01'::DATE, 2000.0, 1000.0), ('Geoffrey Flake', '2018-04-01'::DATE, 0.0, 0.0), ('Geoffrey Flake', '2018-05-01'::DATE, 1000.0, 0.0), ('Geoffrey Flake', '2018-06-01'::DATE, 2000.0, 1000.0), ('Geoffrey Flake', '2018-07-01'::DATE, 0.0, 0.0), ('Geoffrey Flake', '2018-08-01'::DATE, 0.0, 0.0), -- Keeps falling further behind. ('Cy Dismal', '2018-01-01'::DATE, 0.0, 0.0), ('Cy Dismal', '2018-02-01'::DATE, 0.0, 0.0), ('Cy Dismal', '2018-03-01'::DATE, 1000.0, 0.0), ('Cy Dismal', '2018-04-01'::DATE, 2000.0, 1000.0), ('Cy Dismal', '2018-05-01'::DATE, 3000.0, 2000.0), ('Cy Dismal', '2018-06-01'::DATE, 4000.0, 3000.0), ('Cy Dismal', '2018-07-01'::DATE, 5000.0, 4000.0), ('Cy Dismal', '2018-08-01'::DATE, 6000.0, 5000.0), -- Fell behind and isn't catching up, but isn't falling further and -- further behind. Essentially, this person just 'failed' once. ('Leslie Safer', '2018-01-01'::DATE, 0.0, 0.0), ('Leslie Safer', '2018-02-01'::DATE, 0.0, 0.0), ('Leslie Safer', '2018-03-01'::DATE, 1000.0, 1000.0), ('Leslie Safer', '2018-04-01'::DATE, 2000.0, 1000.0), ('Leslie Safer', '2018-05-01'::DATE, 2000.0, 1000.0), ('Leslie Safer', '2018-06-01'::DATE, 2000.0, 1000.0), ('Leslie Safer', '2018-07-01'::DATE, 2000.0, 1000.0), ('Leslie Safer', '2018-08-01'::DATE, 2000.0, 1000.0), -- Always pays on time and in full. ('Ida Idyll', '2018-01-01'::DATE, 0.0, 0.0), ('Ida Idyll', '2018-02-01'::DATE, 0.0, 0.0), ('Ida Idyll', '2018-03-01'::DATE, 0.0, 0.0), ('Ida Idyll', '2018-04-01'::DATE, 0.0, 0.0), ('Ida Idyll', '2018-05-01'::DATE, 0.0, 0.0), ('Ida Idyll', '2018-06-01'::DATE, 0.0, 0.0), ('Ida Idyll', '2018-07-01'::DATE, 0.0, 0.0), ('Ida Idyll', '2018-08-01'::DATE, 0.0, 0.0) ;SELECT name, status_date, late_balance AS "OVERDUE", thirty_day_late_balance AS "30 DAYS OVERDUE", CONDITIONAL_CHANGE_EVENT(thirty_day_late_balance) OVER (PARTITION BY name ORDER BY status_date) AS change_event_cnt, CONDITIONAL_TRUE_EVENT(thirty_day_late_balance) OVER (PARTITION BY name ORDER BY status_date) AS true_cnt FROM borrowers ORDER BY name, status_date ; +----------------+-------------+---------+-----------------+------------------+----------+ | NAME | STATUS_DATE | OVERDUE | 30 DAYS OVERDUE | CHANGE_EVENT_CNT | TRUE_CNT | |----------------+-------------+---------+-----------------+------------------+----------| | Cy Dismal | 2018-01-01 | 0.00 | 0.00 | 0 | 0 | | Cy Dismal | 2018-02-01 | 0.00 | 0.00 | 0 | 0 | | Cy Dismal | 2018-03-01 | 1000.00 | 0.00 | 0 | 0 | | Cy Dismal | 2018-04-01 | 2000.00 | 1000.00 | 1 | 1 | | Cy Dismal | 2018-05-01 | 3000.00 | 2000.00 | 2 | 2 | | Cy Dismal | 2018-06-01 | 4000.00 | 3000.00 | 3 | 3 | | Cy Dismal | 2018-07-01 | 5000.00 | 4000.00 | 4 | 4 | | Cy Dismal | 2018-08-01 | 6000.00 | 5000.00 | 5 | 5 | | Geoffrey Flake | 2018-01-01 | 0.00 | 0.00 | 0 | 0 | | Geoffrey Flake | 2018-02-01 | 1000.00 | 0.00 | 0 | 0 | | Geoffrey Flake | 2018-03-01 | 2000.00 | 1000.00 | 1 | 1 | | Geoffrey Flake | 2018-04-01 | 0.00 | 0.00 | 2 | 1 | | Geoffrey Flake | 2018-05-01 | 1000.00 | 0.00 | 2 | 1 | | Geoffrey Flake | 2018-06-01 | 2000.00 | 1000.00 | 3 | 2 | | Geoffrey Flake | 2018-07-01 | 0.00 | 0.00 | 4 | 2 | | Geoffrey Flake | 2018-08-01 | 0.00 | 0.00 | 4 | 2 | | Ida Idyll | 2018-01-01 | 0.00 | 0.00 | 0 | 0 | | Ida Idyll | 2018-02-01 | 0.00 | 0.00 | 0 | 0 | | Ida Idyll | 2018-03-01 | 0.00 | 0.00 | 0 | 0 | | Ida Idyll | 2018-04-01 | 0.00 | 0.00 | 0 | 0 | | Ida Idyll | 2018-05-01 | 0.00 | 0.00 | 0 | 0 | | Ida Idyll | 2018-06-01 | 0.00 | 0.00 | 0 | 0 | | Ida Idyll | 2018-07-01 | 0.00 | 0.00 | 0 | 0 | | Ida Idyll | 2018-08-01 | 0.00 | 0.00 | 0 | 0 | | Leslie Safer | 2018-01-01 | 0.00 | 0.00 | 0 | 0 | | Leslie Safer | 2018-02-01 | 0.00 | 0.00 | 0 | 0 | | Leslie Safer | 2018-03-01 | 1000.00 | 1000.00 | 1 | 1 | | Leslie Safer | 2018-04-01 | 2000.00 | 1000.00 | 1 | 2 | | Leslie Safer | 2018-05-01 | 2000.00 | 1000.00 | 1 | 3 | | Leslie Safer | 2018-06-01 | 2000.00 | 1000.00 | 1 | 4 | | Leslie Safer | 2018-07-01 | 2000.00 | 1000.00 | 1 | 5 | | Leslie Safer | 2018-08-01 | 2000.00 | 1000.00 | 1 | 6 | +----------------+-------------+---------+-----------------+------------------+----------+
Here is a more extensive example:
CREATE OR REPLACE TABLE tbl
(p int, o int, i int, r int, s varchar(100));
INSERT INTO tbl VALUES
(100,1,1,70,'seventy'),(100,2,2,30, 'thirty'),(100,3,3,40,'fourty'),(100,4,NULL,90,'ninety'),(100,5,5,50,'fifty'),(100,6,6,30,'thirty'),
(200,7,7,40,'fourty'),(200,8,NULL,NULL,'n_u_l_l'),(200,9,NULL,NULL,'n_u_l_l'),(200,10,10,20,'twenty'),(200,11,NULL,90,'ninety'),
(300,12,12,30,'thirty'),
(400,13,NULL,20,'twenty');
SELECT * FROM tbl ORDER BY p, o, i;
+-----+----+--------+--------+---------+
| P | O | I | R | S |
+-----+----+--------+--------+---------+
| 100 | 1 | 1 | 70 | seventy |
| 100 | 2 | 2 | 30 | thirty |
| 100 | 3 | 3 | 40 | fourty |
| 100 | 4 | [NULL] | 90 | ninety |
| 100 | 5 | 5 | 50 | fifty |
| 100 | 6 | 6 | 30 | thirty |
| 200 | 7 | 7 | 40 | fourty |
| 200 | 8 | [NULL] | [NULL] | n_u_l_l |
| 200 | 9 | [NULL] | [NULL] | n_u_l_l |
| 200 | 10 | 10 | 20 | twenty |
| 200 | 11 | [NULL] | 90 | ninety |
| 300 | 12 | 12 | 30 | thirty |
| 400 | 13 | [NULL] | 20 | twenty |
+-----+----+--------+--------+---------+
SELECT p, o, CONDITIONAL_TRUE_EVENT(o>2) OVER (PARTITION BY p ORDER BY o) FROM tbl ORDER BY p, o;
+-----+----+--------------------------------------------------------------+
| P | O | CONDITIONAL_TRUE_EVENT(O>2) OVER (PARTITION BY P ORDER BY O) |
|-----+----+--------------------------------------------------------------|
| 100 | 1 | 0 |
| 100 | 2 | 0 |
| 100 | 3 | 1 |
| 100 | 4 | 2 |
| 100 | 5 | 3 |
| 100 | 6 | 4 |
| 200 | 7 | 1 |
| 200 | 8 | 2 |
| 200 | 9 | 3 |
| 200 | 10 | 4 |
| 200 | 11 | 5 |
| 300 | 12 | 1 |
| 400 | 13 | 1 |
+-----+----+--------------------------------------------------------------+
SELECT p, o, CONDITIONAL_TRUE_EVENT(LAG(O) OVER (PARTITION BY P ORDER BY O) >1) OVER (PARTITION BY P ORDER BY O) FROM tbl ORDER BY p, o;
+-----+----+-----------------------------------------------------------------------------------------------------+
| P | O | CONDITIONAL_TRUE_EVENT(LAG(O) OVER (PARTITION BY P ORDER BY O) >1) OVER (PARTITION BY P ORDER BY O) |
|-----+----+-----------------------------------------------------------------------------------------------------|
| 100 | 1 | 0 |
| 100 | 2 | 0 |
| 100 | 3 | 1 |
| 100 | 4 | 2 |
| 100 | 5 | 3 |
| 100 | 6 | 4 |
| 200 | 7 | 0 |
| 200 | 8 | 1 |
| 200 | 9 | 2 |
| 200 | 10 | 3 |
| 200 | 11 | 4 |
| 300 | 12 | 0 |
| 400 | 13 | 0 |
+-----+----+-----------------------------------------------------------------------------------------------------+