- Categories:
Aggregate functions (Similarity Estimation) , Window functions
MINHASH_COMBINE¶
Combines input MinHash states into a single MinHash output state. This Minhash state can then be input to the APPROXIMATE_SIMILARITY function to estimate the similarity with other MinHash states.
This allows use cases in which MINHASH is run over horizontal rowsets of the same table, producing a MinHash state for each rowset. These states can then be combined using MINHASH_COMBINE, producing the same output state as a single run of MINHASH over the entire table.
For more information about MinHash states, see Estimating Similarity of Two or More Sets.
- See also:
Syntax¶
MINHASH_COMBINE( [ DISTINCT ] <state> )
Usage notes¶
DISTINCT can be included as an argument, but has no effect.
Input MinHash
state
must have MinHash arrays of equal length.
Examples¶
USE SCHEMA snowflake_sample_data.tpch_sf1;
SELECT MINHASH_COMBINE(mh) FROM
(
(SELECT MINHASH(5, c2) mh FROM orders WHERE c2 <= 10000)
UNION
(SELECT MINHASH(5, c2) mh FROM orders WHERE c2 > 10000 AND c2 <= 20000)
UNION
(SELECT MINHASH(5, C2) mh FROM orders WHERE c2 > 20000)
);
+-----------------------+
| MINHASH_COMBINE(MH) |
|-----------------------|
| { |
| "state": [ |
| 628914288006793, |
| 1071764954434168, |
| 991489123966035, |
| 2395105834644106, |
| 680224867834949 |
| ], |
| "type": "minhash", |
| "version": 1 |
| } |
+-----------------------+
Here is a more extensive example, showing the three related functions
MINHASH
, MINHASH_COMBINE
and APPROXIMATE_SIMILARITY
. This
example creates 3 tables (ta, tb, and tc), two of which (ta and tb) are
similar, and two of which (ta and tc) are completely dissimilar.
Create and populate tables with values:
CREATE TABLE ta (i INTEGER); CREATE TABLE tb (i INTEGER); CREATE TABLE tc (i INTEGER); -- Insert values into the 3 tables. INSERT INTO ta (i) VALUES (1), (2), (3), (4), (5), (6), (7), (8), (9), (10); -- Almost the same as the preceding values. INSERT INTO tb (i) VALUES (1), (2), (3), (4), (5), (6), (7), (8), (9), (11); -- Different values and different number of values. INSERT INTO tc (i) VALUES (-1), (-20), (-300), (-4000);Calculate minhash info for the initial set of data:
CREATE TABLE minhash_a_1 (mh) AS SELECT MINHASH(100, i) FROM ta; CREATE TABLE minhash_b (mh) AS SELECT MINHASH(100, i) FROM tb; CREATE TABLE minhash_c (mh) AS SELECT MINHASH(100, i) FROM tc;Add more data to one of the tables:
INSERT INTO ta (i) VALUES (12);Demonstrate the
MINHASH_COMBINE
function:-- Record minhash information about only the new rows: CREATE TABLE minhash_a_2 (mh) AS SELECT MINHASH(100, i) FROM ta WHERE i > 10; -- Now combine all the minhash info for the old and new rows in table ta. CREATE TABLE minhash_a (mh) AS SELECT MINHASH_COMBINE(mh) FROM ( (SELECT mh FROM minhash_a_1) UNION ALL (SELECT mh FROM minhash_a_2) );This query shows the approximate similarity of the two similar tables (ta and tb):
SELECT APPROXIMATE_SIMILARITY (mh) FROM ( (SELECT mh FROM minhash_a) UNION ALL (SELECT mh FROM minhash_b) ); +-----------------------------+ | APPROXIMATE_SIMILARITY (MH) | |-----------------------------| | 0.75 | +-----------------------------+This query shows the approximate similarity of the two very different tables (ta and tc):
SELECT APPROXIMATE_SIMILARITY (mh) FROM ( (SELECT mh FROM minhash_a) UNION ALL (SELECT mh FROM minhash_c) ); +-----------------------------+ | APPROXIMATE_SIMILARITY (MH) | |-----------------------------| | 0 | +-----------------------------+