Utilisation de DB-API Snowpark Python¶
With Snowpark Python DB-API, Snowpark Python users can programmatically pull data from external databases into Snowflake. It includes:
Prise en charge Python DB-API : connexion à des bases de données externes à l’aide des pilotes 2.0 DB-API standard de Python.
Configuration rationalisée : utilisez
pippour installer les pilotes nécessaires, sans avoir à gérer de dépendances supplémentaires.
With these APIs, you can seamlessly pull data into Snowflake tables and transform it using Snowpark DataFrames for advanced analytics.
La DB-API peut être utilisée de la même manière que l’API `Spark JDBC<https://spark.apache.org/docs/3.5.4/sql-data-sources-jdbc.html>`_. La plupart des paramètres sont conçus pour être identiques ou similaires pour une meilleure parité. En outre, Snowpark met l’accent sur une conception Python en premier lieu, avec des conventions de nommage intuitives, évitant ainsi les configurations JDBC spécifiques. Cela fournit aux développeurs Python une expérience familière. Pour plus d’informations comparant la DB-API Snowpark Python avec l’API JDBC Spark, consultez le tableau suivant :
Paramètres DB-API¶
Paramètre |
DB-API Snowpark Python |
|---|---|
|
Fonction pour créer une connexion Python DB-API. |
|
Spécifie la table dans la base de données source. |
|
Requête SQL englobée en tant que sous-requête pour la lecture des données. |
|
Colonne de partitionnement pour les lectures parallèles. |
|
Limite inférieure du partitionnement. |
|
Limite supérieure du partitionnement. |
|
Nombre de partitions pour le parallélisme. |
|
Délai d’inactivité pour l’exécution SQL (en secondes). |
|
Nombre de lignes extraites par aller-retour. |
|
Schéma personnalisé pour l’extraction de données dans des bases de données externes. |
|
Nombre de travailleurs pour la récupération parallèle et l’extraction de données à partir de bases de données externes. |
|
Liste des conditions pour les partitions de clause WHERE. |
|
Exécute une instruction SQL ou PL/SQL lors de l’initialisation de la session. |
|
Exécute la charge de travail à l’aide d’une UDTF Snowflake pour de meilleures performances. |
|
Nombre de lots extraits à fusionner dans un seul fichier Parquet avant son importation. |
Comprendre le parallélisme¶
Snowpark Python DB-API has two forms of ingestion mechanism underlying.
- Local ingestion
In local ingestion, Snowpark first fetches data from external sources to your local environment where the
dbapi()function is called and converts them to Parquet files. Next, Snowpark uploads these Parquet files to a temporary Snowflake stage and copies them into a temporary table from the stage.- UDTF ingestion
In UDTF ingestion, all workloads run on the Snowflake server. Snowpark first creates a UDTF and executes it, and the UDTF directly ingests data into Snowflake and stores it in a temporary table.
Snowpark Python DB-API also has two ways to parallelize and accelerate ingestion.
- Partition column
This method divides source data into a number of partitions based on four parameters when users call
dbapi():columnlower_boundupper_boundnum_partitions
These four parameters have to be set at the same time and
columnmust be numeric or date type.- Predicates
This method divides source data into partitions based on parameter predicates, which are a list of expressions suitable for inclusion in
WHEREclauses, where each expression defines a partition. Predicates provide a more flexible way of dividing partitions; for example, you can divide partitions on boolean or non-numeric columns.
Snowpark Python DB-API also allows adjusting parallelism level within a partition.
- Fetch_size
Within a partition, the API fetches rows in chunks defined by fetch_size. These rows are written to Snowflake in parallel as they are fetched, allowing reading and writing to overlap and maximize throughput.
By combining the above methods of ingestion and parallelism, Snowflake has four ways of ingestion:
Local ingestion with partition column
df_local_par_column = session.read.dbapi( create_connection, table="target_table", fetch_size=100000, num_partitions=4, column="ID", # Swap with the column you want your partition based on upper_bound=10000, lower_bound=0 )
Local ingestion with predicates
df_local_predicates = session.read.dbapi( create_connection, table="target_table", fetch_size=100000, predicates=[ "ID < 3", "ID >= 3" ] )
UDTF ingestion with partition column
udtf_configs = { "external_access_integration": "<your external access integration>" } df_udtf_par_column = session.read.dbapi( create_connection, table="target_table", udtf_configs=udtf_configs, fetch_size=100000, num_partitions=4, column="ID", # Swap with the column you want your partition based on upper_bound=10000, lower_bound=0 )
UDTF ingestion with predicates
udtf_configs = { "external_access_integration": "<your external access integration>" } df_udtf_predicates = session.read.dbapi( create_dbx_connection, table="target_table", udtf_configs=udtf_configs, fetch_size=100000, predicates=[ "ID < 3", "ID >= 3" ] )
SQL server¶
Pour vous connecter à SQL Server de Snowpark, vous avez besoin des trois paquets suivants :
Snowpark : snowflake-snowpark-python[pandas]
Pilote ODBC pour SQL Server : Pilote ODBC Microsoft pour SQL Server
En installant le pilote, vous acceptez l’EULA de Microsoft.
La bibliothèque open source pyodbc : pyodbc
Les exemples de code suivants montrent comment se connecter à un serveur SQL d’un client Snowpark et d’une procédure stockée.
Utiliser la DB-API pour se connecter à SQL Server à partir d’un client Snowpark¶
Installez le pilote SQL Python :
/bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install.sh)" brew tap microsoft/mssql-release https://github.com/Microsoft/homebrew-mssql-release brew update HOMEBREW_ACCEPT_EULA=Y brew install msodbcsql18 mssql-tools18
Installez
snowflake-snowpark-python[pandas]etpyodbc:pip install snowflake-snowpark-python[pandas] pip install pyodbc
Définissez la méthode d’usine pour créer une connexion à SQL Server :
def create_sql_server_connection(): import pyodbc SERVER = "<your host name>" PORT = <your port> UID = "<your user name>" PWD = "<your password>" DATABASE = "<your database name>" connection_str = ( f"DRIVER={{ODBC Driver 18 for SQL Server}};" f"SERVER={SERVER}:{PORT};" f"UID={UID};" f"PWD={PWD};" f"DATABASE={DATABASE};" "TrustServerCertificate=yes" "Encrypt=yes" # Optional to identify source of queries "APP=snowflake-snowpark-python;" ) connection = pyodbc.connect(connection_str) return connection # Feel free to combine local/udtf ingestion and partition column/predicates as # stated in the understanding parallelism section # Call dbapi to pull data from target table df = session.read.dbapi( create_sql_server_connection, table="target_table" ) # Call dbapi to pull data from target query df_query = session.read.dbapi( create_sql_server_connection, query="select * from target_table" ) # Pull data from target table with parallelism using partition column df_local_par_column = session.read.dbapi( create_sql_server_connection, table="target_table", fetch_size=100000, num_partitions=4, column="ID", # Swap with the column you want your partition based on upper_bound=10000, lower_bound=0 ) udtf_configs = { "external_access_integration": "<your external access integration>" } # Pull data from target table with udtf ingestion with parallelism using predicates df_udtf_predicates = session.read.dbapi( create_sql_server_connection, table="target_table", udtf_configs=udtf_configs, fetch_size=100000, predicates=[ "ID < 3", "ID >= 3" ] )
Using DB-API to connect to SQL Server from a stored procedure¶
Configurez l’intégration d’accès externe (EAI), qui est nécessaire pour permettre à Snowflake de se connecter au point de terminaison source.
Note
PrivateLink est recommandé pour le transfert de données sécurisé, en particulier lorsqu’il s’agit d’informations sensibles. Assurez-vous que les privilèges PrivateLink nécessaires de votre compte Snowflake sont activés, et que la fonctionnalité PrivateLink est configurée et active dans l’environnement de votre notebook Snowflake.
Configurez le secret, une règle de réseau pour autoriser la sortie vers le point de terminaison source, et l’EAI :
-- Configure a secret to allow egress to the source endpoint CREATE OR REPLACE SECRET mssql_secret TYPE = PASSWORD USERNAME = 'mssql_username' PASSWORD = 'mssql_password'; -- Configure a network rule to allow egress to the source endpoint CREATE OR REPLACE NETWORK RULE mssql_network_rule MODE = EGRESS TYPE = HOST_PORT VALUE_LIST = ('mssql_host:mssql_port'); -- Configure an external access integration CREATE OR REPLACE EXTERNAL ACCESS INTEGRATION mssql_access_integration ALLOWED_NETWORK_RULES = (mssql_network_rule) ALLOWED_AUTHENTICATION_SECRETS = (mssql_secret) ENABLED = true;
Use the DB-API to pull data from SQL Server in a Python stored procedure:
CREATE OR REPLACE PROCEDURE sp_mssql_dbapi() RETURNS TABLE() LANGUAGE PYTHON RUNTIME_VERSION='3.11' HANDLER='run' PACKAGES=('snowflake-snowpark-python', 'pyodbc', 'msodbcsql') EXTERNAL_ACCESS_INTEGRATIONS = (mssql_access_integration) SECRETS = ('cred' = mssql_secret ) AS $$ # Get user name and password from mssql_secret import _snowflake username_password_object = _snowflake.get_username_password('cred') USER = username_password_object.username PASSWORD = username_password_object.password # Define a method to connect to SQL server_hostname from snowflake.snowpark import Session def create_sql_server_connection(): import pyodbc host = "<your host>" port = <your port> username = USER password = PASSWORD database = "<your database name>" connection_str = ( f"DRIVER={{ODBC Driver 18 for SQL Server}};" f"SERVER={host},{port};" f"DATABASE={database};" f"UID={username};" f"PWD={password};" "TrustServerCertificate=yes" "Encrypt=yes" # Optional to identify source of queries "APP=snowflake-snowpark-python;" ) connection = pyodbc.connect(connection_str) return connection def run(session: Session): # Feel free to combine local/udtf ingestion and partition column/predicates # as stated in the understanding parallelism section # Call dbapi to pull data from target table df = session.read.dbapi( create_sql_server_connection, table="target_table" ) # Call dbapi to pull data from target query df_query = session.read.dbapi( create_sql_server_connection, query="select * from target_table" ) # Pull data from target table with parallelism using partition column df_local_par_column = session.read.dbapi( create_sql_server_connection, table="target_table", fetch_size=100000, num_partitions=4, column="ID", # swap with the column you want your partition based on upper_bound=10000, lower_bound=0 ) udtf_configs = { "external_access_integration": "<your external access integration>" } # Pull data from target table with udtf ingestion with parallelism using predicates df_udtf_predicates = session.read.dbapi( create_sql_server_connection, table="target_table", udtf_configs=udtf_configs, fetch_size=100000, predicates=[ "ID < 3", "ID >= 3" ] ) return df $$; CALL sp_mssql_dbapi();
Using DB-API to connect to SQL server from a Snowflake notebook¶
From Snowflake Notebook packages, select
snowflake-snowpark-pythonandpyodbc.In the files tab on the left side, open the file
environment.ymland add the following line of code after other entries under dependencies:- msodbcsql18
Configure the secret, a network rule to allow egress to the source endpoint, and external access integration:
-- Configure a secret to allow egress to the source endpoint CREATE OR REPLACE SECRET mssql_secret TYPE = PASSWORD USERNAME = 'mssql_username' PASSWORD = 'mssql_password'; ALTER NOTEBOOK mynotebook SET SECRETS = ('snowflake-secret-object' = mssql_secret); -- Configure a network rule to allow egress to the source endpoint CREATE OR REPLACE NETWORK RULE mssql_network_rule MODE = EGRESS TYPE = HOST_PORT VALUE_LIST = ('mssql_host:mssql_port'); -- Configure an external access integration CREATE OR REPLACE EXTERNAL ACCESS INTEGRATION mssql_access_integration ALLOWED_NETWORK_RULES = (mssql_network_rule) ALLOWED_AUTHENTICATION_SECRETS = (mssql_secret) ENABLED = true;
Configurer l’accès externe pour Snowflake Notebooks, puis redémarrez la session du notebook.
Use the DB-API to pull data from SQL Server in a Python cell of a Snowflake notebook:
# Get user name and password from mssql_secret import _snowflake username_password_object = _snowflake.get_username_password('snowflake-secret-object') USER = username_password_object.username PASSWORD = username_password_object.password import snowflake.snowpark.context session = snowflake.snowpark.context.get_active_session() def create_sql_server_connection(): import pyodbc SERVER = SQL_SERVER_CONNECTION_PARAMETERS["SERVER"] UID = SQL_SERVER_CONNECTION_PARAMETERS["UID"] PWD = SQL_SERVER_CONNECTION_PARAMETERS["PWD"] DATABASE = "test_query_history" connection_str = ( f"DRIVER={{ODBC Driver 18 for SQL Server}};" f"SERVER={SERVER};" f"UID={UID};" f"PWD={PWD};" f"DATABASE={DATABASE};" "TrustServerCertificate=yes;" "Encrypt=yes;" # Optional to identify source of queries "APP=snowflake-snowpark-python;" ) connection = pyodbc.connect(connection_str) return connection # Feel free to combine local/udtf ingestion and partition column/predicates as # stated in the understanding parallelism section # Call dbapi to pull data from target table df = session.read.dbapi( create_sql_server_connection, table="target_table" ) # Call dbapi to pull data from target query df_query = session.read.dbapi( create_sql_server_connection, query="select * from target_table" ) # Pull data from target table with parallelism using partition column df_local_par_column = session.read.dbapi( create_sql_server_connection, table="target_table", fetch_size=100000, num_partitions=4, column="ID", # swap with the column you want your partition based on upper_bound=10000, lower_bound=0 ) udtf_configs = { "external_access_integration": "<your external access integration>" } # Pull data from target table with udtf ingestion with parallelism using predicates df_udtf_predicates = session.read.dbapi( create_sql_server_connection, table="target_table", udtf_configs=udtf_configs, fetch_size=100000, predicates=[ "ID < 3", "ID >= 3" ] ) # Save data into sf_table df.write.mode("overwrite").save_as_table('sf_table')
Source tracing when using DB-API to connect to SQL server¶
Include a tag of Snowpark in your create connection function:
def create_sql_server_connection(): import pyodbc SERVER = "<your host name>" PORT = <your port> UID = "<your user name>" PWD = "<your password>" DATABASE = "<your database name>" connection_str = ( f"DRIVER={{ODBC Driver 18 for SQL Server}};" f"SERVER={SERVER}:{PORT};" f"UID={UID};" f"PWD={PWD};" f"DATABASE={DATABASE};" "TrustServerCertificate=yes" "Encrypt=yes" # include this parameter for source tracing "APP=snowflake-snowpark-python;" ) connection = pyodbc.connect(connection_str) return connection
Run the following SQL in your data source to capture queries from Snowpark that are still live:
SELECT s.session_id, s.program_name, r.status, t.text AS sql_text FROM sys.dm_exec_sessions s JOIN sys.dm_exec_requests r ON s.session_id = r.session_id CROSS APPLY sys.dm_exec_sql_text(r.sql_handle) AS t WHERE s.program_name = 'snowflake-snowpark-python';
Oracle¶
Pour vous connecter à Oracle depuis Snowpark, vous avez besoin des deux paquets suivants :
Snowpark : snowflake-snowpark-python[pandas]
La bibliothèque open source oracledb : oracledb
Les exemples de code suivants montrent comment se connecter à Oracle à partir d’un client Snowpark, de procédures stockées et d’un notebook Snowflake.
Utiliser la DB-API pour se connecter à Oracle à partir d’un client Snowpark¶
Installez
snowflake-snowpark-python[pandas]etoracledb:pip install snowflake-snowpark-python[pandas] pip install oracledb
Utilisez la DB-API pour extraire des données d’Oracle et définir la méthode d’usine pour créer une connexion à Oracle :
def create_oracle_db_connection(): import oracledb HOST = "<your host>" PORT = <your port> SERVICE_NAME = "<your service name>" USER = "<your user name>" PASSWORD = "your password" DSN = f"{HOST}:{PORT}/{SERVICE_NAME}" connection = oracledb.connect( user=USER, password=PASSWORD, dsn=DSN ) # Optional: include this parameter for source tracing connection.clientinfo = "snowflake-snowpark-python" return connection # Feel free to combine local/udtf ingestion and partition column/predicates as # stated in the understanding parallelism section # Call dbapi to pull data from target table df = session.read.dbapi( create_oracle_db_connection, table="target_table" ) # Call dbapi to pull data from target query df_query = session.read.dbapi( create_oracle_db_connection, query="select * from target_table" ) # Pull data from target table with parallelism using partition column df_local_par_column = session.read.dbapi( create_oracle_db_connection, table="target_table", fetch_size=100000, num_partitions=4, column="ID", # swap with the column you want your partition based on upper_bound=10000, lower_bound=0 ) udtf_configs = { "external_access_integration": "<your external access integration>" } # Pull data from target table with udtf ingestion with parallelism using predicates df_udtf_predicates = session.read.dbapi( create_oracle_db_connection, table="target_table", udtf_configs=udtf_configs, fetch_size=100000, predicates=[ "ID < 3", "ID >= 3" ] )
Using DB-API to connect to Oracle from a stored procedure¶
Configurez l’intégration d’accès externe (EAI), qui est nécessaire pour permettre à Snowflake de se connecter au point de terminaison source.
Note
PrivateLink est recommandé pour le transfert de données sécurisé, en particulier lorsqu’il s’agit d’informations sensibles. Assurez-vous que les privilèges PrivateLink nécessaires de votre compte Snowflake sont activés, et que la fonctionnalité PrivateLink est configurée et active dans l’environnement de votre notebook Snowflake.
Configurez le secret, une règle de réseau pour autoriser la sortie vers le point de terminaison source, et l’EAI :
-- Configure the secret, a network rule to allow egress to the source endpoint, and EAI: CREATE OR REPLACE SECRET ora_secret TYPE = PASSWORD USERNAME = 'ora_username' PASSWORD = 'ora_password'; -- configure a network rule to allow egress to the source endpoint CREATE OR REPLACE NETWORK RULE ora_network_rule MODE = EGRESS TYPE = HOST_PORT VALUE_LIST = ('ora_host:ora_port'); -- configure an external access integration CREATE OR REPLACE EXTERNAL ACCESS INTEGRATION ora_access_integration ALLOWED_NETWORK_RULES = (ora_network_rule) ALLOWED_AUTHENTICATION_SECRETS = (ora_secret) ENABLED = true;
Use Snowpark Python DB-API to pull data from Oracle in a Python stored procedure:
CREATE OR REPLACE PROCEDURE sp_ora_dbapi() RETURNS TABLE() LANGUAGE PYTHON RUNTIME_VERSION='3.11' HANDLER='run' PACKAGES=('snowflake-snowpark-python', 'oracledb') EXTERNAL_ACCESS_INTEGRATIONS = (ora_access_integration) SECRETS = ('cred' = ora_secret ) AS $$ # Get user name and password from ora_secret import _snowflake username_password_object = _snowflake.get_username_password('cred') USER = username_password_object.username PASSWORD = username_password_object.password # Define the factory method for creating a connection to Oracle from snowflake.snowpark import Session def create_oracle_db_connection(): import oracledb host = "ora_host" port = "ora_port" service_name = "ora_service" user = USER password = PASSWORD DSN = f"{host}:{port}/{service_name}" connection = oracledb.connect( user=USER, password=PASSWORD, dsn=DSN ) # Optional: include this parameter for source tracing connection.clientinfo = "snowflake-snowpark-python" return connection def run(session: Session): # Feel free to combine local/udtf ingestion and partition column/predicates # as stated in the understanding parallelism section # Call dbapi to pull data from target table df = session.read.dbapi( create_oracle_db_connection, table="target_table" ) # Call dbapi to pull data from target query df_query = session.read.dbapi( create_oracle_db_connection, query="select * from target_table" ) # Pull data from target table with parallelism using partition column df_local_par_column = session.read.dbapi( create_oracle_db_connection, table="target_table", fetch_size=100000, num_partitions=4, column="ID", # swap with the column you want your partition based on upper_bound=10000, lower_bound=0 ) udtf_configs = { "external_access_integration": "<your external access integration>" } # Pull data from target table with udtf ingestion with parallelism using predicates df_udtf_predicates = session.read.dbapi( create_oracle_db_connection, table="target_table", udtf_configs=udtf_configs, fetch_size=100000, predicates=[ "ID < 3", "ID >= 3" ] ) return df $$; CALL sp_ora_dbapi();
Using DB-API to connect to Oracle from a Snowflake notebook¶
Dans les paquets de notebooks Snowflake, sélectionnez
snowflake-snowpark-pythonetoracledb.Configurez l’intégration d’accès externe (EAI), qui est nécessaire pour permettre à Snowflake de se connecter au point de terminaison source.
Note
PrivateLink est recommandé pour le transfert de données sécurisé, en particulier lorsqu’il s’agit d’informations sensibles. Assurez-vous que les privilèges PrivateLink nécessaires de votre compte Snowflake sont activés, et que la fonctionnalité PrivateLink est configurée et active dans l’environnement de votre notebook Snowflake.
Configure the secret, a network rule, and EAI to allow egress to the source endpoint:
-- Configure the secret, a network rule to allow egress to the source endpoint, and EAI: CREATE OR REPLACE SECRET mysql_secret TYPE = PASSWORD USERNAME = 'mysql_username' PASSWORD = 'mysql_password'; ALTER NOTEBOOK mynotebook SET SECRETS = ('snowflake-secret-object' = mysql_secret); -- configure a network rule to allow egress to the source endpoint CREATE OR REPLACE NETWORK RULE mysql_network_rule MODE = EGRESS TYPE = HOST_PORT VALUE_LIST = ('mysql_host:mysql_port'); -- configure an external access integration CREATE OR REPLACE EXTERNAL ACCESS INTEGRATION mysql_access_integration ALLOWED_NETWORK_RULES = (mysql_network_rule) ALLOWED_AUTHENTICATION_SECRETS = (mysql_secret) ENABLED = true;
Configurer l’accès externe pour Snowflake Notebooks, puis redémarrez la session du notebook.
Use the DB-API to pull data from Oracle in a Python cell of a Snowflake notebook:
# Get user name and password from ora_secret import _snowflake username_password_object = _snowflake.get_username_password('snowflake-secret-object') USER = username_password_object.username PASSWORD = username_password_object.password import snowflake.snowpark.context session = snowflake.snowpark.context.get_active_session() # Define the factory method for creating a connection to Oracle def create_oracle_db_connection(): import oracledb host = "ora_host" port = "ora_port" service_name = "ora_service" user = USER password = PASSWORD DSN = f"{host}:{port}/{service_name}" connection = oracledb.connect( user=USER, password=PASSWORD, dsn=DSN, ) # Optional: include this parameter for source tracing connection.clientinfo = "snowflake-snowpark-python" return connection # Feel free to combine local/udtf ingestion and partition column/predicates as # stated in the understanding parallelism section # Call dbapi to pull data from target table df = session.read.dbapi( create_oracle_db_connection, table="target_table" ) # Call dbapi to pull data from target query df_query = session.read.dbapi( create_oracle_db_connection, query="select * from target_table" ) # Pull data from target table with parallelism using partition column df_local_par_column = session.read.dbapi( create_oracle_db_connection, table="target_table", fetch_size=100000, num_partitions=4, column="ID", # swap with the column you want your partition based on upper_bound=10000, lower_bound=0 ) udtf_configs = { "external_access_integration": "<your external access integration>" } # Pull data from target table with udtf ingestion with parallelism using predicates df_udtf_predicates = session.read.dbapi( create_oracle_db_connection, table="target_table", udtf_configs=udtf_configs, fetch_size=100000, predicates=[ "ID < 3", "ID >= 3" ] ) # Save data into sf_table df_ora.write.mode("overwrite").save_as_table('sf_table')
Source tracing when using DB-API to connect to Oracle¶
Include a tag of Snowpark in your create connection function.
def create_oracle_db_connection(): import oracledb HOST = "myhost" PORT = "myport" SERVICE_NAME = "myservice" USER = "myuser" PASSWORD = "mypassword" DSN = f"{HOST}:{PORT}/{SERVICE_NAME}" connection = oracledb.connect( user=USER, password=PASSWORD, dsn=DSN, ) # include this parameter for source tracing connection.clientinfo = "snowflake-snowpark-python" return connection
Run the following SQL in your data source to capture queries from Snowpark that are still live:
SELECT s.sid, s.serial#, s.username, s.module, q.sql_id, q.sql_text, q.last_active_time FROM v$session s JOIN v$sql q ON s.sql_id = q.sql_id WHERE s.client_info = 'snowflake-snowpark-python'
PostgreSQL¶
Pour vous connecter à PostgreSQL depuis Snowpark, vous avez besoin des deux paquets suivants :
Snowpark : snowflake-snowpark-python[pandas]
La bibliothèque open source pycopg2 : pycopg2
Les exemples de code suivants montrent comment se connecter à PostgreSQL à partir d’un client Snowpark, de procédures stockées et d’un notebook Snowflake.
Utiliser la DB-API pour se connecter à PostgreSQL depuis un client Snowpark¶
Installez
psycopg2.pip install psycopg2
Définissez la méthode d’usine pour créer une connexion à PostgreSQL :
def create_pg_connection(): import psycopg2 connection = psycopg2.connect( host="pg_host", port=pg_port, dbname="pg_dbname", user="pg_user", password="pg_password", # Optional: include this parameter for source tracing application_name="snowflake-snowpark-python" ) return connection # Feel free to combine local/udtf ingestion and partition column/predicates as # stated in the understanding parallelism section # Call dbapi to pull data from target table df = session.read.dbapi( create_pg_connection, table="target_table" ) # Call dbapi to pull data from target query df_query = session.read.dbapi( create_pg_connection, query="select * from target_table" ) # Pull data from target table with parallelism using partition column df_local_par_column = session.read.dbapi( create_pg_connection, table="target_table", fetch_size=100000, num_partitions=4, column="ID", # Swap with the column you want your partition based on upper_bound=10000, lower_bound=0 ) udtf_configs = { "external_access_integration": "<your external access integration>" } # Pull data from target table with udtf ingestion with parallelism using predicates df_udtf_predicates = session.read.dbapi( create_pg_connection, table="target_table", udtf_configs=udtf_configs, fetch_size=100000, predicates=[ "ID < 3", "ID >= 3" ] )
Using DB-API to connect to PostgreSQL from a stored procedure¶
Configurez l’intégration d’accès externe (EAI), qui est nécessaire pour permettre à Snowflake de se connecter au point de terminaison source.
Note
PrivateLink est recommandé pour le transfert de données sécurisé, en particulier lorsqu’il s’agit d’informations sensibles. Assurez-vous que les privilèges PrivateLink nécessaires de votre compte Snowflake sont activés, et que la fonctionnalité PrivateLink est configurée et active dans l’environnement de votre notebook Snowflake.
Configurez le secret, une règle de réseau pour autoriser la sortie vers le point de terminaison source, et l’EAI :
-- configure a secret CREATE OR REPLACE SECRET pg_secret TYPE = PASSWORD USERNAME = 'pg_username' PASSWORD = 'pg_password'; -- configure a network rule. CREATE OR REPLACE NETWORK RULE pg_network_rule MODE = EGRESS TYPE = HOST_PORT VALUE_LIST = ('pg_host:pg_port'); -- configure an external access integration. CREATE OR REPLACE EXTERNAL ACCESS INTEGRATION pg_access_integration ALLOWED_NETWORK_RULES = (pg_network_rule) ALLOWED_AUTHENTICATION_SECRETS = (pg_secret) ENABLED = true;
Use Snowpark Python DB-API to pull data from PostgreSQL in a Python stored procedure:
CREATE OR REPLACE PROCEDURE sp_pg_dbapi() RETURNS TABLE() LANGUAGE PYTHON RUNTIME_VERSION='3.11' HANDLER='run' PACKAGES=('snowflake-snowpark-python', 'psycopg2') EXTERNAL_ACCESS_INTEGRATIONS = (pg_access_integration) SECRETS = ('cred' = pg_secret ) AS $$ # Get user name and password from pg_secret import _snowflake username_password_object = _snowflake.get_username_password('cred') USER = username_password_object.username PASSWORD = username_password_object.password # Define the factory method for creating a connection to PostgreSQL from snowflake.snowpark import Session def create_pg_connection(): import psycopg2 connection = psycopg2.connect( host="pg_host", port=pg_port, dbname="pg_dbname", user=USER, password=PASSWORD, # Optional: include this parameter for source tracing application_name="snowflake-snowpark-python" ) return connection def run(session: Session): # Feel free to combine local/udtf ingestion and partition column/predicates # as stated in the understanding parallelism section # Call dbapi to pull data from target table df = session.read.dbapi( create_pg_connection, table="target_table" ) # Call dbapi to pull data from target query df_query = session.read.dbapi( create_pg_connection, query="select * from target_table" ) # Pull data from target table with parallelism using partition column df_local_par_column = session.read.dbapi( create_pg_connection, table="target_table", fetch_size=100000, num_partitions=4, column="ID", # swap with the column you want your partition based on upper_bound=10000, lower_bound=0 ) udtf_configs = { "external_access_integration": "<your external access integration>" } # Pull data from target table with udtf ingestion with parallelism using predicates df_udtf_predicates = session.read.dbapi( create_pg_connection, table="target_table", udtf_configs=udtf_configs, fetch_size=100000, predicates=[ "ID < 3", "ID >= 3" ] ) return df $$; CALL sp_pg_dbapi();
Using DB-API to connect to PostgreSQL from a Snowflake notebook¶
Dans les paquets de notebooks Snowflake, sélectionnez
snowflake-snowpark-pythonetpsycopg2.Configurez l’intégration d’accès externe (EAI), qui est nécessaire pour permettre à Snowflake de se connecter au point de terminaison source.
Note
PrivateLink est recommandé pour le transfert de données sécurisé, en particulier lorsqu’il s’agit d’informations sensibles. Assurez-vous que les privilèges PrivateLink nécessaires de votre compte Snowflake sont activés, et que la fonctionnalité PrivateLink est configurée et active dans l’environnement de votre notebook Snowflake.
Configurez le secret, une règle de réseau pour autoriser la sortie vers le point de terminaison source, et l’EAI :
-- Configure the secret CREATE OR REPLACE SECRET pg_secret TYPE = PASSWORD USERNAME = 'pg_username' PASSWORD = 'pg_password'; ALTER NOTEBOOK pg_notebook SET SECRETS = ('snowflake-secret-object' = pg_secret); -- Configure the network rule to allow egress to the source endpoint CREATE OR REPLACE NETWORK RULE pg_network_rule MODE = EGRESS TYPE = HOST_PORT VALUE_LIST = ('pg_host:pg_port'); -- Configure external access integration CREATE OR REPLACE EXTERNAL ACCESS INTEGRATION pg_access_integration ALLOWED_NETWORK_RULES = (pg_network_rule) ALLOWED_AUTHENTICATION_SECRETS = (pg_secret) ENABLED = true;
Configurer l’accès externe pour Snowflake Notebooks, puis redémarrez la session du notebook.
Use the DB-API to pull data from PostgreSQL in a Python cell of a Snowflake notebook:
# Get the user name and password from :code:`pg_secret` import _snowflake username_password_object = _snowflake.get_username_password('snowflake-secret-object') USER = username_password_object.username PASSWORD = username_password_object.password import snowflake.snowpark.context session = snowflake.snowpark.context.get_active_session() # Define the factory method for creating a connection to PostgreSQL def create_pg_connection(): import psycopg2 connection = psycopg2.connect( host="pg_host", port=pg_port, dbname="pg_dbname", user=USER, password=PASSWORD, # Optional: include this parameter for source tracing application_name="snowflake-snowpark-python" ) return connection # Feel free to combine local/udtf ingestion and partition column/predicates as # stated in the understanding parallelism section # Call dbapi to pull data from target table df = session.read.dbapi( create_pg_connection, table="target_table" ) # Call dbapi to pull data from target query df_query = session.read.dbapi( create_pg_connection, query="select * from target_table" ) # Pull data from target table with parallelism using partition column df_local_par_column = session.read.dbapi( create_pg_connection, table="target_table", fetch_size=100000, num_partitions=4, column="ID", # swap with the column you want your partition based on upper_bound=10000, lower_bound=0 ) udtf_configs = { "external_access_integration": "<your external access integration>" } # Pull data from target table with udtf ingestion with parallelism using predicates df_udtf_predicates = session.read.dbapi( create_pg_connection, table="target_table", udtf_configs=udtf_configs, fetch_size=100000, predicates=[ "ID < 3", "ID >= 3" ] ) # Save data into sf_table df.write.mode("overwrite").save_as_table('sf_table') # Get the user name and password from :code:`pg_secret`
Source tracing when using DB-API to connect to PostgreSQL¶
Include a tag of Snowpark in your create connection function.
def create_pg_connection(): import psycopg2 connection = psycopg2.connect( host="pg_host", port=pg_port, dbname="pg_dbname", user="pg_user", password="pg_password", # Include this parameter for source tracing application_name="snowflake-snowpark-python" ) return connection
Run the following SQL in your data source to capture queries from Snowpark that are still live:
SELECT pid, usename AS username, datname AS database, application_name, client_addr, state, query_start, query FROM pg_stat_activity WHERE application_name = 'snowflake-snowpark-python';
MySQL¶
Pour vous connecter à MySQL depuis Snowpark, vous avez besoin des deux paquets suivants :
Snowpark : snowflake-snowpark-python[pandas]
La bibliothèque open source pymysql : PyMySQL
Les exemples de code suivants montrent comment se connecter à MySQL à partir d’un client Snowpark, de procédures stockées et d’un notebook Snowflake.
Utiliser la DB-API pour se connecter à MySQL depuis un client Snowpark¶
Installez pymysql :
pip install snowflake-snowpark-python[pandas] pip install pymysql
Définissez la méthode d’usine pour créer une connexion à MySQL :
def create_mysql_connection(): import pymysql connection = pymysql.connect( host="mysql_host", port=mysql_port, database="mysql_db", user="mysql_user", password="mysql_password", # Optional: include this parameter for source tracing init_command="SET @program_name='snowflake-snowpark-python';" ) return connection # Feel free to combine local/udtf ingestion and partition column/predicates as # stated in the understanding parallelism section # Call dbapi to pull data from target table df = session.read.dbapi( create_mysql_connection, table="target_table" ) # Call dbapi to pull data from target query df_query = session.read.dbapi( create_mysql_connection, query="select * from target_table" ) # Pull data from target table with parallelism using partition column df_local_par_column = session.read.dbapi( create_mysql_connection, table="target_table", fetch_size=100000, num_partitions=4, column="ID", # swap with the column you want your partition based on upper_bound=10000, lower_bound=0 ) udtf_configs = { "external_access_integration": "<your external access integration>" } # Pull data from target table with udtf ingestion with parallelism using predicates df_udtf_predicates = session.read.dbapi( create_mysql_connection, table="target_table", udtf_configs=udtf_configs, fetch_size=100000, predicates=[ "ID < 3", "ID >= 3" ] )
Using DB-API to connect to MySQL from a stored procedure¶
Configurez l’intégration d’accès externe (EAI), qui est nécessaire pour permettre à Snowflake de se connecter au point de terminaison source.
Note
PrivateLink est recommandé pour le transfert de données sécurisé, en particulier lorsqu’il s’agit d’informations sensibles. Assurez-vous que les privilèges PrivateLink nécessaires de votre compte Snowflake sont activés, et que la fonctionnalité PrivateLink est configurée et active dans l’environnement de votre notebook Snowflake.
Configurez le secret, une règle de réseau pour autoriser la sortie vers le point de terminaison source, et l’EAI :
CREATE OR REPLACE SECRET mysql_secret TYPE = PASSWORD USERNAME = 'mysql_username' PASSWORD = 'mysql_password'; -- configure a network rule. CREATE OR REPLACE NETWORK RULE mysql_network_rule MODE = EGRESS TYPE = HOST_PORT VALUE_LIST = ('mysql_host:mysql_port'); -- configure an external access integration CREATE OR REPLACE EXTERNAL ACCESS INTEGRATION mysql_access_integration ALLOWED_NETWORK_RULES = (mysql_network_rule) ALLOWED_AUTHENTICATION_SECRETS = (mysql_secret) ENABLED = true;
Utilisez la DB-API Snowpark Python pour extraire des données depuis MySQL dans une procédure stockée Python :
CREATE OR REPLACE PROCEDURE sp_mysql_dbapi() RETURNS TABLE() LANGUAGE PYTHON RUNTIME_VERSION='3.11' HANDLER='run' PACKAGES=('snowflake-snowpark-python', 'pymysql') EXTERNAL_ACCESS_INTEGRATIONS = (mysql_access_integration) SECRETS = ('cred' = mysql_secret ) AS $$ # Get user name and password from mysql_secret import _snowflake username_password_object = _snowflake.get_username_password('cred') USER = username_password_object.username PASSWORD = username_password_object.password # Define the factory method for creating a connection to MySQL from snowflake.snowpark import session def create_mysql_connection(): import pymysql connection = pymysql.connect( host="mysql_host", port=mysql_port, dbname="mysql_dbname", user=USER, password=PASSWORD, # Optional: include this parameter for source tracing init_command="SET @program_name='snowflake-snowpark-python';" ) return connection # Using Snowpark Python DB-API to pull data from MySQL in a Python stored procedure. def run(session: Session): # Feel free to combine local/udtf ingestion and partition column/predicates # as stated in the understanding parallelism section # Call dbapi to pull data from target table df = session.read.dbapi( create_mysql_connection, table="target_table" ) # Call dbapi to pull data from target query df_query = session.read.dbapi( create_mysql_connection, query="select * from target_table" ) # Pull data from target table with parallelism using partition column df_local_par_column = session.read.dbapi( create_mysql_connection, table="target_table", fetch_size=100000, num_partitions=4, column="ID", # swap with the column you want your partition based on upper_bound=10000, lower_bound=0 ) udtf_configs = { "external_access_integration": "<your external access integration>" } # Pull data from target table with udtf ingestion with parallelism using predicates df_udtf_predicates = session.read.dbapi( create_mysql_connection, table="target_table", udtf_configs=udtf_configs, fetch_size=100000, predicates=[ "ID < 3", "ID >= 3" ] ) return df $$; CALL sp_mysql_dbapi();
Using DB-API to connect to MySQL from a Snowflake notebook¶
Dans les paquets de notebooks Snowflake, sélectionnez
snowflake-snowpark-pythonetpymysql.Configurez l’intégration d’accès externe (EAI), qui est nécessaire pour permettre à Snowflake de se connecter au point de terminaison source.
Note
PrivateLink est recommandé pour le transfert de données sécurisé, en particulier lorsqu’il s’agit d’informations sensibles. Assurez-vous que les privilèges PrivateLink nécessaires de votre compte Snowflake sont activés, et que la fonctionnalité PrivateLink est configurée et active dans l’environnement de votre notebook Snowflake.
Configurez le secret, une règle de réseau pour autoriser la sortie vers le point de terminaison source, et l’EAI :
CREATE OR REPLACE SECRET mysql_secret TYPE = PASSWORD USERNAME = 'mysql_username' PASSWORD = 'mysql_password'; ALTER NOTEBOOK mynotebook SET SECRETS = ('snowflake-secret-object' = mysql_secret); -- configure a network rule. CREATE OR REPLACE NETWORK RULE mysql_network_rule MODE = EGRESS TYPE = HOST_PORT VALUE_LIST = ('mysql_host:mysql_port'); -- configure an EAI CREATE OR REPLACE EXTERNAL ACCESS INTEGRATION mysql_access_integration ALLOWED_NETWORK_RULES = (mysql_network_rule) ALLOWED_AUTHENTICATION_SECRETS = (mysql_secret) ENABLED = true;
Configurer l’accès externe pour Snowflake Notebooks, puis redémarrez la session du notebook.
Use the DB-API to pull data from MySQL in a Python cell of a Snowflake notebook:
# Get user name and password from mysql_secret import _snowflake username_password_object = _snowflake.get_username_password('snowflake-secret-object') USER = username_password_object.username PASSWORD = username_password_object.password import snowflake.snowpark.context session = snowflake.snowpark.context.get_active_session() # Define the factory method for creating a connection to MySQL def create_mysql_connection(): import pymysql connection = pymysql.connect( host="mysql_host", port=mysql_port, dbname="mysql_dbname", user=USER, password=PASSWORD, # Optional: include this parameter for source tracing init_command="SET @program_name='snowflake-snowpark-python';" ) return connection # Feel free to combine local/udtf ingestion and partition column/predicates as # stated in the understanding parallelism section # Call dbapi to pull data from target table df = session.read.dbapi( create_mysql_connection, table="target_table" ) # Call dbapi to pull data from target query df_query = session.read.dbapi( create_mysql_connection, query="select * from target_table" ) # Pull data from target table with parallelism using partition column df_local_par_column = session.read.dbapi( create_mysql_connection, table="target_table", fetch_size=100000, num_partitions=4, column="ID", # swap with the column you want your partition based on upper_bound=10000, lower_bound=0 ) udtf_configs = { "external_access_integration": "<your external access integration>" } # Pull data from target table with udtf ingestion with parallelism using predicates df_udtf_predicates = session.read.dbapi( create_mysql_connection, table="target_table", udtf_configs=udtf_configs, fetch_size=100000, predicates=[ "ID < 3", "ID >= 3" ] ) # Save data into sf_table df.write.mode("overwrite").save_as_table('sf_table')
Source tracing when using DB-API to connect to MySQL¶
Include a tag of Snowpark in your create connection function.
def create_mysql_connection(): import pymysql connection = pymysql.connect( host="mysql_host", port=mysql_port, database="mysql_db", user="mysql_user", password="mysql_password", # include this parameter for source tracing init_command="SET @program_name='snowflake-snowpark-python';" ) return connection
Run the following SQL in your data source to capture queries from Snowpark:
SELECT * FROM performance_schema.events_statements_history_long WHERE THREAD_ID = ( SELECT THREAD_ID FROM performance_schema.events_statements_history_long WHERE SQL_TEXT = "SET @program_name='snowflake-snowpark-python'" ORDER BY EVENT_ID DESC LIMIT 1 )
Databricks¶
Pour vous connecter à Databricks depuis Snowpark, vous avez besoin des deux paquets suivants :
Snowpark : snowflake-snowpark-python[pandas]
La bibliothèque open source pycopg2 : databricks-sql-connector
The following code examples show how to connect to Databricks from a Snowpark client, stored procedures, and a Snowflake notebook.
Using DB-API to connect to Databricks from a Snowpark client¶
Install databricks-sql-connector:
pip install snowflake-snowpark-python[pandas] pip install databricks-sql-connector
Définissez la méthode d’usine pour créer une connexion à Databricks :
def create_dbx_connection(): import databricks.sql connection = databricks.sql.connect( server_hostname=HOST, http_path=PATH, access_token=ACCESS_TOKEN ) return connection # Feel free to combine local/udtf ingestion and partition column/predicates as # stated in the understanding parallelism section # Call dbapi to pull data from target table df = session.read.dbapi( create_dbx_connection, table="target_table" ) # Call dbapi to pull data from target query df_query = session.read.dbapi( create_dbx_connection, query="select * from target_table" ) # Pull data from target table with parallelism using partition column df_local_par_column = session.read.dbapi( create_dbx_connection, table="target_table", fetch_size=100000, num_partitions=4, column="ID", # swap with the column you want your partition based on upper_bound=10000, lower_bound=0 ) udtf_configs = { "external_access_integration": "<your external access integration>" } # Pull data from target table with udtf ingestion with parallelism using predicates df_udtf_predicates = session.read.dbapi( create_dbx_connection, table="target_table", udtf_configs=udtf_configs, fetch_size=100000, predicates=[ "ID < 3", "ID >= 3" ] )
Using DB-API to connect to Databricks from a stored procedure¶
Configurez l’intégration d’accès externe (EAI), qui est nécessaire pour permettre à Snowflake de se connecter au point de terminaison source.
Note
PrivateLink est recommandé pour le transfert de données sécurisé, en particulier lorsqu’il s’agit d’informations sensibles. Assurez-vous que les privilèges PrivateLink nécessaires de votre compte Snowflake sont activés, et que la fonctionnalité PrivateLink est configurée et active dans l’environnement de votre notebook Snowflake.
Configurez le secret, une règle de réseau pour autoriser la sortie vers le point de terminaison source, et l’EAI :
CREATE OR REPLACE SECRET dbx_secret TYPE = GENERIC_STRING SECRET_STRING = 'dbx_access_token'; CREATE OR REPLACE NETWORK RULE dbx_network_rule MODE = EGRESS TYPE = HOST_PORT VALUE_LIST = ('dbx_host:dbx_port'); CREATE OR REPLACE EXTERNAL ACCESS INTEGRATION dbx_access_integration ALLOWED_NETWORK_RULES = (dbx_network_rule) ALLOWED_AUTHENTICATION_SECRETS = (dbx_secret) ENABLED = true;
Utilisez la DB-API Snowpark Python pour extraire des données de Databricks dans une procédure stockée Python :
CREATE OR REPLACE PROCEDURE sp_dbx_dbapi() RETURNS TABLE() LANGUAGE PYTHON RUNTIME_VERSION='3.11' HANDLER='run' PACKAGES=('snowflake-snowpark-python', 'databricks-sql-connector') EXTERNAL_ACCESS_INTEGRATIONS = (dbx_access_integration) SECRETS = ('cred' = dbx_secret ) AS $$ # Get user name and password from dbx_secret import _snowflake ACCESS_TOKEN = _snowflake.get_generic_secret_string('cred') from snowflake.snowpark import Session # Define the method for creating a connection to Databricks def create_dbx_connection(): import databricks.sql connection = databricks.sql.connect( server_hostname="dbx_host", http_path="dbx_path", access_token=ACCESS_TOKEN, ) return connection # Using Snowpark Python DB-API to pull data from DataBricks in a Python stored procedure. def run(session: Session): # Feel free to combine local/udtf ingestion and partition column/predicates # as stated in the understanding parallelism section # Call dbapi to pull data from target table df = session.read.dbapi( create_dbx_connection, table="target_table" ) # Call dbapi to pull data from target query df_query = session.read.dbapi( create_dbx_connection, query="select * from target_table" ) # Pull data from target table with parallelism using partition column df_local_par_column = session.read.dbapi( create_dbx_connection, table="target_table", fetch_size=100000, num_partitions=4, column="ID", # swap with the column you want your partition based on upper_bound=10000, lower_bound=0 ) udtf_configs = { "external_access_integration": "<your external access integration>" } # Pull data from target table with udtf ingestion with parallelism using predicates df_udtf_predicates = session.read.dbapi( create_dbx_connection, table="target_table", udtf_configs=udtf_configs, fetch_size=100000, predicates=[ "ID < 3", "ID >= 3" ] ) return df $$; CALL sp_dbx_dbapi();
Using DB-API to connect to Databricks from a Snowflake notebook¶
From Snowflake Notebook packages, select
snowflake-snowpark-pythonanddatabricks-sql-connector.Configurez l’intégration d’accès externe (EAI), qui est nécessaire pour permettre à Snowflake de se connecter au point de terminaison source.
Note
PrivateLink est recommandé pour le transfert de données sécurisé, en particulier lorsqu’il s’agit d’informations sensibles. Assurez-vous que les privilèges PrivateLink nécessaires de votre compte Snowflake sont activés, et que la fonctionnalité PrivateLink est configurée et active dans l’environnement de votre notebook Snowflake.
Configurez le secret, une règle de réseau pour autoriser la sortie vers le point de terminaison source, et l’EAI :
CREATE OR REPLACE SECRET dbx_secret TYPE = GENERIC_STRING SECRET_STRING = 'dbx_access_token'; ALTER NOTEBOOK mynotebook SET SECRETS = ('snowflake-secret-object' = dbx_secret); CREATE OR REPLACE NETWORK RULE dbx_network_rule MODE = EGRESS TYPE = HOST_PORT VALUE_LIST = ('dbx_host:dbx_port'); CREATE OR REPLACE EXTERNAL ACCESS INTEGRATION dbx_access_integration ALLOWED_NETWORK_RULES = (dbx_network_rule) ALLOWED_AUTHENTICATION_SECRETS = (dbx_secret) ENABLED = true;
Configurer l’accès externe pour Snowflake Notebooks, puis redémarrez la session du notebook.
Use the DB-API to pull data from Databricks in a Python cell of a Snowflake notebook:
# Get user name and password from dbx_secret import _snowflake ACCESS_TOKEN = _snowflake.get_generic_secret_string('cred') import snowflake.snowpark.context session = snowflake.snowpark.context.get_active_session() # Define the factory method for creating a connection to Databricks def create_dbx_connection(): import databricks.sql connection = databricks.sql.connect( server_hostname="dbx_host", http_path="dbx_path", access_token=ACCESS_TOKEN, ) return connection # Feel free to combine local/udtf ingestion and partition column/predicates as # stated in the understanding parallelism section # Call dbapi to pull data from target table df = session.read.dbapi( create_dbx_connection, table="target_table" ) # Call dbapi to pull data from target query df_query = session.read.dbapi( create_dbx_connection, query="select * from target_table" ) # Pull data from target table with parallelism using partition column df_local_par_column = session.read.dbapi( create_dbx_connection, table="target_table", fetch_size=100000, num_partitions=4, column="ID", # swap with the column you want your partition based on upper_bound=10000, lower_bound=0 ) udtf_configs = { "external_access_integration": "<your external access integration>" } # Pull data from target table with udtf ingestion with parallelism using predicates df_udtf_predicates = session.read.dbapi( create_dbx_connection, table="target_table", udtf_configs=udtf_configs, fetch_size=100000, predicates=[ "ID < 3", "ID >= 3" ] ) # Save data into sf_table df.write.mode("overwrite").save_as_table('sf_table')
Source tracing when using DB-API to connect to Databricks¶
Include a tag of Snowpark in your create connection function.
def create_dbx_connection(): import databricks.sql connection = databricks.sql.connect( server_hostname=HOST, http_path=PATH, access_token=ACCESS_TOKEN, # include this parameter for source tracing user_agent_entry="snowflake-snowpark-python" ) return connection
Navigate to query history on the DataBricks console and search for the query whose source is
snowflake-snowpark-python.
Limitations¶
La DB-API snowpark Python prend en charge uniquement les pilotes conformes 2.0 DB-API (par exemple, pyodbc ou oracledb). Les pilotes JDBC ne sont pas pris en charge dans cette version.