Snowpark Python DB-APIの使用¶
With Snowpark Python DB-API, Snowpark Python users can programmatically pull data from external databases into Snowflake. It includes:
Python DB-APIサポート: Pythonの標準のDB-API 2.0ドライバーを使用して外部データベースに接続します。
合理化された設定:
pipを使用して必要なドライバーをインストールするため、追加の依存関係を管理する必要がありません。
With these APIs, you can seamlessly pull data into Snowflake tables and transform it using Snowpark DataFrames for advanced analytics.
その `DB-API<https://docs.snowflake.com/en/developer-guide/snowpark/reference/python/latest/snowpark/api/snowflake.snowpark.DataFrameReader.dbapi>`_ は `Spark JDBCAPI<https://spark.apache.org/docs/3.5.4/sql-data-sources-jdbc.html>`_ と同様の方法で使用できます。ほとんどのパラメーターは、より安全性を高めるために、同一または類似するように設計されています。同時に、Snowparkは直感的な命名規則を持つPythonファーストの設計を強調し、JDBC固有の構成を回避します。このため、 Python開発者は慣れ親しんだエクスペリエンスを提供します。Snowpark Python DB-APIと Spark JDBC API の比較については、以下の表を参照してください。
DB-APIパラメーター:¶
パラメーター |
Snowpark Python DB-API |
|---|---|
|
PythonをDB-API 接続を作成する関数 。 |
|
ソースデータベースのテーブルを指定します。 |
|
SQL クエリは、データを読み取るためのサブクエリとしてラップされました。 |
|
並列読み取りのパーティション列。 |
|
パーティション分割の下限。 |
|
パーティション分割の上限。 |
|
並列処理のパーティションの数。 |
|
SQL 実行のタイムアウト(秒単位)。 |
|
ラウンドトリップごとに取得された行数。 |
|
外部データベースからデータをプルするためのカスタムスキーマ。 |
|
外部データベースからのデータの並行フェッチおよびプルのワーカー数。 |
|
WHERE 句のパーティションの条件リスト。 |
|
セッション初期化時の SQL または PL/SQL ステートメントを実行します。 |
|
パフォーマンスを向上させるためのUDTF Snowflakeを使用してワークロードを実行します。 |
|
アップロードされる前に単一のParquetファイルにマージするフェッチされたバッチの数。 |
並列処理の理解¶
Snowpark Python DB-API has two forms of ingestion mechanism underlying.
- Local ingestion
In local ingestion, Snowpark first fetches data from external sources to your local environment where the
dbapi()function is called and converts them to Parquet files. Next, Snowpark uploads these Parquet files to a temporary Snowflake stage and copies them into a temporary table from the stage.- UDTF ingestion
In UDTF ingestion, all workloads run on the Snowflake server. Snowpark first creates a UDTF and executes it, and the UDTF directly ingests data into Snowflake and stores it in a temporary table.
Snowpark Python DB-API also has two ways to parallelize and accelerate ingestion.
- Partition column
This method divides source data into a number of partitions based on four parameters when users call
dbapi():columnlower_boundupper_boundnum_partitions
These four parameters have to be set at the same time and
columnmust be numeric or date type.- Predicates
This method divides source data into partitions based on parameter predicates, which are a list of expressions suitable for inclusion in
WHEREclauses, where each expression defines a partition. Predicates provide a more flexible way of dividing partitions; for example, you can divide partitions on boolean or non-numeric columns.
Snowpark Python DB-API also allows adjusting parallelism level within a partition.
- Fetch_size
Within a partition, the API fetches rows in chunks defined by fetch_size. These rows are written to Snowflake in parallel as they are fetched, allowing reading and writing to overlap and maximize throughput.
By combining the above methods of ingestion and parallelism, Snowflake has four ways of ingestion:
Local ingestion with partition column
df_local_par_column = session.read.dbapi( create_connection, table="target_table", fetch_size=100000, num_partitions=4, column="ID", # Swap with the column you want your partition based on upper_bound=10000, lower_bound=0 )
Local ingestion with predicates
df_local_predicates = session.read.dbapi( create_connection, table="target_table", fetch_size=100000, predicates=[ "ID < 3", "ID >= 3" ] )
UDTF ingestion with partition column
udtf_configs = { "external_access_integration": "<your external access integration>" } df_udtf_par_column = session.read.dbapi( create_connection, table="target_table", udtf_configs=udtf_configs, fetch_size=100000, num_partitions=4, column="ID", # Swap with the column you want your partition based on upper_bound=10000, lower_bound=0 )
UDTF ingestion with predicates
udtf_configs = { "external_access_integration": "<your external access integration>" } df_udtf_predicates = session.read.dbapi( create_dbx_connection, table="target_table", udtf_configs=udtf_configs, fetch_size=100000, predicates=[ "ID < 3", "ID >= 3" ] )
SQL server¶
SnowparkのSQLサーバーに接続するには 、次の3つのパッケージが必要です。
Snowpark:Snowflake-snowpark-python[pandas]
SQL サーバー ODBC ドライバー:Microsoft ODBC Driver for SQL Server
ドライバーをインストールすることにより、Microsoftの EULA に同意するものとします。
オープンソースpyodbcライブラリ。Pyodbc
以下のコード例は、SnowparkクライアントとストアドプロシージャからSQLサーバーに接続する方法を示しています。
DB-APIを使用して、SnowparkクライアントからSQLサーバーに接続する¶
Python SQL Driverをインストールします。
/bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install.sh)" brew tap microsoft/mssql-release https://github.com/Microsoft/homebrew-mssql-release brew update HOMEBREW_ACCEPT_EULA=Y brew install msodbcsql18 mssql-tools18
snowflake-snowpark-python[pandas]およびpyodbcをインストールします。pip install snowflake-snowpark-python[pandas] pip install pyodbc
SQLサーバーへの接続を作成するファクトリーメソッドを定義します。
def create_sql_server_connection(): import pyodbc SERVER = "<your host name>" PORT = <your port> UID = "<your user name>" PWD = "<your password>" DATABASE = "<your database name>" connection_str = ( f"DRIVER={{ODBC Driver 18 for SQL Server}};" f"SERVER={SERVER}:{PORT};" f"UID={UID};" f"PWD={PWD};" f"DATABASE={DATABASE};" "TrustServerCertificate=yes" "Encrypt=yes" # Optional to identify source of queries "APP=snowflake-snowpark-python;" ) connection = pyodbc.connect(connection_str) return connection # Feel free to combine local/udtf ingestion and partition column/predicates as # stated in the understanding parallelism section # Call dbapi to pull data from target table df = session.read.dbapi( create_sql_server_connection, table="target_table" ) # Call dbapi to pull data from target query df_query = session.read.dbapi( create_sql_server_connection, query="select * from target_table" ) # Pull data from target table with parallelism using partition column df_local_par_column = session.read.dbapi( create_sql_server_connection, table="target_table", fetch_size=100000, num_partitions=4, column="ID", # Swap with the column you want your partition based on upper_bound=10000, lower_bound=0 ) udtf_configs = { "external_access_integration": "<your external access integration>" } # Pull data from target table with udtf ingestion with parallelism using predicates df_udtf_predicates = session.read.dbapi( create_sql_server_connection, table="target_table", udtf_configs=udtf_configs, fetch_size=100000, predicates=[ "ID < 3", "ID >= 3" ] )
Using DB-API to connect to SQL Server from a stored procedure¶
外部アクセス統合(EAI)を構成します。これは、Snowflakeがソースエンドポイントに接続できるようにするために必要です。
注釈
PrivateLink は、特に機密情報を扱う場合に、安全にデータを転送することをお勧めします。Snowflakeアカウントに必要なPrivateLink権限が有効になり、PrivateLink機能がSnowflake Notebook環境で構成され、アクティブになっていることを確認します。
シークレット、送信元エンドポイントへのエグレスを許可するネットワークルール、EAIを構成します。
-- Configure a secret to allow egress to the source endpoint CREATE OR REPLACE SECRET mssql_secret TYPE = PASSWORD USERNAME = 'mssql_username' PASSWORD = 'mssql_password'; -- Configure a network rule to allow egress to the source endpoint CREATE OR REPLACE NETWORK RULE mssql_network_rule MODE = EGRESS TYPE = HOST_PORT VALUE_LIST = ('mssql_host:mssql_port'); -- Configure an external access integration CREATE OR REPLACE EXTERNAL ACCESS INTEGRATION mssql_access_integration ALLOWED_NETWORK_RULES = (mssql_network_rule) ALLOWED_AUTHENTICATION_SECRETS = (mssql_secret) ENABLED = true;
Use the DB-API to pull data from SQL Server in a Python stored procedure:
CREATE OR REPLACE PROCEDURE sp_mssql_dbapi() RETURNS TABLE() LANGUAGE PYTHON RUNTIME_VERSION='3.11' HANDLER='run' PACKAGES=('snowflake-snowpark-python', 'pyodbc', 'msodbcsql') EXTERNAL_ACCESS_INTEGRATIONS = (mssql_access_integration) SECRETS = ('cred' = mssql_secret ) AS $$ # Get user name and password from mssql_secret import _snowflake username_password_object = _snowflake.get_username_password('cred') USER = username_password_object.username PASSWORD = username_password_object.password # Define a method to connect to SQL server_hostname from snowflake.snowpark import Session def create_sql_server_connection(): import pyodbc host = "<your host>" port = <your port> username = USER password = PASSWORD database = "<your database name>" connection_str = ( f"DRIVER={{ODBC Driver 18 for SQL Server}};" f"SERVER={host},{port};" f"DATABASE={database};" f"UID={username};" f"PWD={password};" "TrustServerCertificate=yes" "Encrypt=yes" # Optional to identify source of queries "APP=snowflake-snowpark-python;" ) connection = pyodbc.connect(connection_str) return connection def run(session: Session): # Feel free to combine local/udtf ingestion and partition column/predicates # as stated in the understanding parallelism section # Call dbapi to pull data from target table df = session.read.dbapi( create_sql_server_connection, table="target_table" ) # Call dbapi to pull data from target query df_query = session.read.dbapi( create_sql_server_connection, query="select * from target_table" ) # Pull data from target table with parallelism using partition column df_local_par_column = session.read.dbapi( create_sql_server_connection, table="target_table", fetch_size=100000, num_partitions=4, column="ID", # swap with the column you want your partition based on upper_bound=10000, lower_bound=0 ) udtf_configs = { "external_access_integration": "<your external access integration>" } # Pull data from target table with udtf ingestion with parallelism using predicates df_udtf_predicates = session.read.dbapi( create_sql_server_connection, table="target_table", udtf_configs=udtf_configs, fetch_size=100000, predicates=[ "ID < 3", "ID >= 3" ] ) return df $$; CALL sp_mssql_dbapi();
Using DB-API to connect to SQL server from a Snowflake notebook¶
From Snowflake Notebook packages, select
snowflake-snowpark-pythonandpyodbc.In the files tab on the left side, open the file
environment.ymland add the following line of code after other entries under dependencies:- msodbcsql18
Configure the secret, a network rule to allow egress to the source endpoint, and external access integration:
-- Configure a secret to allow egress to the source endpoint CREATE OR REPLACE SECRET mssql_secret TYPE = PASSWORD USERNAME = 'mssql_username' PASSWORD = 'mssql_password'; ALTER NOTEBOOK mynotebook SET SECRETS = ('snowflake-secret-object' = mssql_secret); -- Configure a network rule to allow egress to the source endpoint CREATE OR REPLACE NETWORK RULE mssql_network_rule MODE = EGRESS TYPE = HOST_PORT VALUE_LIST = ('mssql_host:mssql_port'); -- Configure an external access integration CREATE OR REPLACE EXTERNAL ACCESS INTEGRATION mssql_access_integration ALLOWED_NETWORK_RULES = (mssql_network_rule) ALLOWED_AUTHENTICATION_SECRETS = (mssql_secret) ENABLED = true;
Snowflake Notebooks の外部アクセスの設定 、ノートブックセッションを再起動します。
Use the DB-API to pull data from SQL Server in a Python cell of a Snowflake notebook:
# Get user name and password from mssql_secret import _snowflake username_password_object = _snowflake.get_username_password('snowflake-secret-object') USER = username_password_object.username PASSWORD = username_password_object.password import snowflake.snowpark.context session = snowflake.snowpark.context.get_active_session() def create_sql_server_connection(): import pyodbc SERVER = SQL_SERVER_CONNECTION_PARAMETERS["SERVER"] UID = SQL_SERVER_CONNECTION_PARAMETERS["UID"] PWD = SQL_SERVER_CONNECTION_PARAMETERS["PWD"] DATABASE = "test_query_history" connection_str = ( f"DRIVER={{ODBC Driver 18 for SQL Server}};" f"SERVER={SERVER};" f"UID={UID};" f"PWD={PWD};" f"DATABASE={DATABASE};" "TrustServerCertificate=yes;" "Encrypt=yes;" # Optional to identify source of queries "APP=snowflake-snowpark-python;" ) connection = pyodbc.connect(connection_str) return connection # Feel free to combine local/udtf ingestion and partition column/predicates as # stated in the understanding parallelism section # Call dbapi to pull data from target table df = session.read.dbapi( create_sql_server_connection, table="target_table" ) # Call dbapi to pull data from target query df_query = session.read.dbapi( create_sql_server_connection, query="select * from target_table" ) # Pull data from target table with parallelism using partition column df_local_par_column = session.read.dbapi( create_sql_server_connection, table="target_table", fetch_size=100000, num_partitions=4, column="ID", # swap with the column you want your partition based on upper_bound=10000, lower_bound=0 ) udtf_configs = { "external_access_integration": "<your external access integration>" } # Pull data from target table with udtf ingestion with parallelism using predicates df_udtf_predicates = session.read.dbapi( create_sql_server_connection, table="target_table", udtf_configs=udtf_configs, fetch_size=100000, predicates=[ "ID < 3", "ID >= 3" ] ) # Save data into sf_table df.write.mode("overwrite").save_as_table('sf_table')
Source tracing when using DB-API to connect to SQL server¶
Include a tag of Snowpark in your create connection function:
def create_sql_server_connection(): import pyodbc SERVER = "<your host name>" PORT = <your port> UID = "<your user name>" PWD = "<your password>" DATABASE = "<your database name>" connection_str = ( f"DRIVER={{ODBC Driver 18 for SQL Server}};" f"SERVER={SERVER}:{PORT};" f"UID={UID};" f"PWD={PWD};" f"DATABASE={DATABASE};" "TrustServerCertificate=yes" "Encrypt=yes" # include this parameter for source tracing "APP=snowflake-snowpark-python;" ) connection = pyodbc.connect(connection_str) return connection
Run the following SQL in your data source to capture queries from Snowpark that are still live:
SELECT s.session_id, s.program_name, r.status, t.text AS sql_text FROM sys.dm_exec_sessions s JOIN sys.dm_exec_requests r ON s.session_id = r.session_id CROSS APPLY sys.dm_exec_sql_text(r.sql_handle) AS t WHERE s.program_name = 'snowflake-snowpark-python';
Oracle¶
SnowparkからOracleに接続するには、次の2つのパッケージが必要です。
Snowpark:Snowflake-snowpark-python[pandas]
オープンソースのoracleedbライブラリ。Oracledb
以下のコード例では、Snowparkクライアント、ストアドプロシージャ、Snowflake NotebookからOracleに接続する方法を示します。
DB-APIを使用して、SnowparkクライアントからOracleに接続する¶
snowflake-snowpark-python[pandas]およびoracledbをインストールします。pip install snowflake-snowpark-python[pandas] pip install oracledb
Oracleからデータを取得するには、DB-APIを使用し、Oracleへの接続を作成するためのファクトリーメソッドを定義します
def create_oracle_db_connection(): import oracledb HOST = "<your host>" PORT = <your port> SERVICE_NAME = "<your service name>" USER = "<your user name>" PASSWORD = "your password" DSN = f"{HOST}:{PORT}/{SERVICE_NAME}" connection = oracledb.connect( user=USER, password=PASSWORD, dsn=DSN ) # Optional: include this parameter for source tracing connection.clientinfo = "snowflake-snowpark-python" return connection # Feel free to combine local/udtf ingestion and partition column/predicates as # stated in the understanding parallelism section # Call dbapi to pull data from target table df = session.read.dbapi( create_oracle_db_connection, table="target_table" ) # Call dbapi to pull data from target query df_query = session.read.dbapi( create_oracle_db_connection, query="select * from target_table" ) # Pull data from target table with parallelism using partition column df_local_par_column = session.read.dbapi( create_oracle_db_connection, table="target_table", fetch_size=100000, num_partitions=4, column="ID", # swap with the column you want your partition based on upper_bound=10000, lower_bound=0 ) udtf_configs = { "external_access_integration": "<your external access integration>" } # Pull data from target table with udtf ingestion with parallelism using predicates df_udtf_predicates = session.read.dbapi( create_oracle_db_connection, table="target_table", udtf_configs=udtf_configs, fetch_size=100000, predicates=[ "ID < 3", "ID >= 3" ] )
Using DB-API to connect to Oracle from a stored procedure¶
外部アクセス統合(EAI)を構成します。これは、Snowflakeがソースエンドポイントに接続できるようにするために必要です。
注釈
PrivateLink は、特に機密情報を扱う場合に、安全にデータを転送することをお勧めします。Snowflakeアカウントに必要なPrivateLink権限が有効になり、PrivateLink機能がSnowflake Notebook環境で構成され、アクティブになっていることを確認します。
シークレット、送信元エンドポイントへのエグレスを許可するネットワークルール、EAIを構成します。
-- Configure the secret, a network rule to allow egress to the source endpoint, and EAI: CREATE OR REPLACE SECRET ora_secret TYPE = PASSWORD USERNAME = 'ora_username' PASSWORD = 'ora_password'; -- configure a network rule to allow egress to the source endpoint CREATE OR REPLACE NETWORK RULE ora_network_rule MODE = EGRESS TYPE = HOST_PORT VALUE_LIST = ('ora_host:ora_port'); -- configure an external access integration CREATE OR REPLACE EXTERNAL ACCESS INTEGRATION ora_access_integration ALLOWED_NETWORK_RULES = (ora_network_rule) ALLOWED_AUTHENTICATION_SECRETS = (ora_secret) ENABLED = true;
Use Snowpark Python DB-API to pull data from Oracle in a Python stored procedure:
CREATE OR REPLACE PROCEDURE sp_ora_dbapi() RETURNS TABLE() LANGUAGE PYTHON RUNTIME_VERSION='3.11' HANDLER='run' PACKAGES=('snowflake-snowpark-python', 'oracledb') EXTERNAL_ACCESS_INTEGRATIONS = (ora_access_integration) SECRETS = ('cred' = ora_secret ) AS $$ # Get user name and password from ora_secret import _snowflake username_password_object = _snowflake.get_username_password('cred') USER = username_password_object.username PASSWORD = username_password_object.password # Define the factory method for creating a connection to Oracle from snowflake.snowpark import Session def create_oracle_db_connection(): import oracledb host = "ora_host" port = "ora_port" service_name = "ora_service" user = USER password = PASSWORD DSN = f"{host}:{port}/{service_name}" connection = oracledb.connect( user=USER, password=PASSWORD, dsn=DSN ) # Optional: include this parameter for source tracing connection.clientinfo = "snowflake-snowpark-python" return connection def run(session: Session): # Feel free to combine local/udtf ingestion and partition column/predicates # as stated in the understanding parallelism section # Call dbapi to pull data from target table df = session.read.dbapi( create_oracle_db_connection, table="target_table" ) # Call dbapi to pull data from target query df_query = session.read.dbapi( create_oracle_db_connection, query="select * from target_table" ) # Pull data from target table with parallelism using partition column df_local_par_column = session.read.dbapi( create_oracle_db_connection, table="target_table", fetch_size=100000, num_partitions=4, column="ID", # swap with the column you want your partition based on upper_bound=10000, lower_bound=0 ) udtf_configs = { "external_access_integration": "<your external access integration>" } # Pull data from target table with udtf ingestion with parallelism using predicates df_udtf_predicates = session.read.dbapi( create_oracle_db_connection, table="target_table", udtf_configs=udtf_configs, fetch_size=100000, predicates=[ "ID < 3", "ID >= 3" ] ) return df $$; CALL sp_ora_dbapi();
Using DB-API to connect to Oracle from a Snowflake notebook¶
Snowflake Notebookパッケージ で
snowflake-snowpark-pythonおよびoracledbを選択します。外部アクセス統合(EAI)を構成します。これは、Snowflakeがソースエンドポイントに接続できるようにするために必要です。
注釈
PrivateLink は、特に機密情報を扱う場合に、安全にデータを転送することをお勧めします。Snowflakeアカウントに必要なPrivateLink権限が有効になり、PrivateLink機能がSnowflake Notebook環境で構成され、アクティブになっていることを確認します。
Configure the secret, a network rule, and EAI to allow egress to the source endpoint:
-- Configure the secret, a network rule to allow egress to the source endpoint, and EAI: CREATE OR REPLACE SECRET mysql_secret TYPE = PASSWORD USERNAME = 'mysql_username' PASSWORD = 'mysql_password'; ALTER NOTEBOOK mynotebook SET SECRETS = ('snowflake-secret-object' = mysql_secret); -- configure a network rule to allow egress to the source endpoint CREATE OR REPLACE NETWORK RULE mysql_network_rule MODE = EGRESS TYPE = HOST_PORT VALUE_LIST = ('mysql_host:mysql_port'); -- configure an external access integration CREATE OR REPLACE EXTERNAL ACCESS INTEGRATION mysql_access_integration ALLOWED_NETWORK_RULES = (mysql_network_rule) ALLOWED_AUTHENTICATION_SECRETS = (mysql_secret) ENABLED = true;
Snowflake Notebooks の外部アクセスの設定 、ノートブックセッションを再起動します。
Use the DB-API to pull data from Oracle in a Python cell of a Snowflake notebook:
# Get user name and password from ora_secret import _snowflake username_password_object = _snowflake.get_username_password('snowflake-secret-object') USER = username_password_object.username PASSWORD = username_password_object.password import snowflake.snowpark.context session = snowflake.snowpark.context.get_active_session() # Define the factory method for creating a connection to Oracle def create_oracle_db_connection(): import oracledb host = "ora_host" port = "ora_port" service_name = "ora_service" user = USER password = PASSWORD DSN = f"{host}:{port}/{service_name}" connection = oracledb.connect( user=USER, password=PASSWORD, dsn=DSN, ) # Optional: include this parameter for source tracing connection.clientinfo = "snowflake-snowpark-python" return connection # Feel free to combine local/udtf ingestion and partition column/predicates as # stated in the understanding parallelism section # Call dbapi to pull data from target table df = session.read.dbapi( create_oracle_db_connection, table="target_table" ) # Call dbapi to pull data from target query df_query = session.read.dbapi( create_oracle_db_connection, query="select * from target_table" ) # Pull data from target table with parallelism using partition column df_local_par_column = session.read.dbapi( create_oracle_db_connection, table="target_table", fetch_size=100000, num_partitions=4, column="ID", # swap with the column you want your partition based on upper_bound=10000, lower_bound=0 ) udtf_configs = { "external_access_integration": "<your external access integration>" } # Pull data from target table with udtf ingestion with parallelism using predicates df_udtf_predicates = session.read.dbapi( create_oracle_db_connection, table="target_table", udtf_configs=udtf_configs, fetch_size=100000, predicates=[ "ID < 3", "ID >= 3" ] ) # Save data into sf_table df_ora.write.mode("overwrite").save_as_table('sf_table')
Source tracing when using DB-API to connect to Oracle¶
Include a tag of Snowpark in your create connection function.
def create_oracle_db_connection(): import oracledb HOST = "myhost" PORT = "myport" SERVICE_NAME = "myservice" USER = "myuser" PASSWORD = "mypassword" DSN = f"{HOST}:{PORT}/{SERVICE_NAME}" connection = oracledb.connect( user=USER, password=PASSWORD, dsn=DSN, ) # include this parameter for source tracing connection.clientinfo = "snowflake-snowpark-python" return connection
Run the following SQL in your data source to capture queries from Snowpark that are still live:
SELECT s.sid, s.serial#, s.username, s.module, q.sql_id, q.sql_text, q.last_active_time FROM v$session s JOIN v$sql q ON s.sql_id = q.sql_id WHERE s.client_info = 'snowflake-snowpark-python'
PostgreSQL¶
PostgreSQLに接続するには、Snowparkからは、次の2つのパッケージが必要です。
Snowpark:Snowflake-snowpark-python[pandas]
オープンソースのpyscopeg2ライブラリ。pyairports
以下のコード例では、Snowparkクライアント、ストアドプロシージャ、Snowflake Snowflake NotebookからPostgreSQLに接続する方法を示します。
DB-APIを使用して、SnowparkクライアントからPostgreSQLに接続する¶
psycopg2をインストール:pip install psycopg2
PostgreSQLへの接続を作成するファクトリーメソッドを定義します。
def create_pg_connection(): import psycopg2 connection = psycopg2.connect( host="pg_host", port=pg_port, dbname="pg_dbname", user="pg_user", password="pg_password", # Optional: include this parameter for source tracing application_name="snowflake-snowpark-python" ) return connection # Feel free to combine local/udtf ingestion and partition column/predicates as # stated in the understanding parallelism section # Call dbapi to pull data from target table df = session.read.dbapi( create_pg_connection, table="target_table" ) # Call dbapi to pull data from target query df_query = session.read.dbapi( create_pg_connection, query="select * from target_table" ) # Pull data from target table with parallelism using partition column df_local_par_column = session.read.dbapi( create_pg_connection, table="target_table", fetch_size=100000, num_partitions=4, column="ID", # Swap with the column you want your partition based on upper_bound=10000, lower_bound=0 ) udtf_configs = { "external_access_integration": "<your external access integration>" } # Pull data from target table with udtf ingestion with parallelism using predicates df_udtf_predicates = session.read.dbapi( create_pg_connection, table="target_table", udtf_configs=udtf_configs, fetch_size=100000, predicates=[ "ID < 3", "ID >= 3" ] )
Using DB-API to connect to PostgreSQL from a stored procedure¶
外部アクセス統合(EAI)を構成します。これは、Snowflakeがソースエンドポイントに接続できるようにするために必要です。
注釈
PrivateLink は、特に機密情報を扱う場合に、安全にデータを転送することをお勧めします。Snowflakeアカウントに必要なPrivateLink権限が有効になり、PrivateLink機能がSnowflake Notebook環境で構成され、アクティブになっていることを確認します。
シークレット、送信元エンドポイントへのエグレスを許可するネットワークルール、EAIを構成します。
-- configure a secret CREATE OR REPLACE SECRET pg_secret TYPE = PASSWORD USERNAME = 'pg_username' PASSWORD = 'pg_password'; -- configure a network rule. CREATE OR REPLACE NETWORK RULE pg_network_rule MODE = EGRESS TYPE = HOST_PORT VALUE_LIST = ('pg_host:pg_port'); -- configure an external access integration. CREATE OR REPLACE EXTERNAL ACCESS INTEGRATION pg_access_integration ALLOWED_NETWORK_RULES = (pg_network_rule) ALLOWED_AUTHENTICATION_SECRETS = (pg_secret) ENABLED = true;
Use Snowpark Python DB-API to pull data from PostgreSQL in a Python stored procedure:
CREATE OR REPLACE PROCEDURE sp_pg_dbapi() RETURNS TABLE() LANGUAGE PYTHON RUNTIME_VERSION='3.11' HANDLER='run' PACKAGES=('snowflake-snowpark-python', 'psycopg2') EXTERNAL_ACCESS_INTEGRATIONS = (pg_access_integration) SECRETS = ('cred' = pg_secret ) AS $$ # Get user name and password from pg_secret import _snowflake username_password_object = _snowflake.get_username_password('cred') USER = username_password_object.username PASSWORD = username_password_object.password # Define the factory method for creating a connection to PostgreSQL from snowflake.snowpark import Session def create_pg_connection(): import psycopg2 connection = psycopg2.connect( host="pg_host", port=pg_port, dbname="pg_dbname", user=USER, password=PASSWORD, # Optional: include this parameter for source tracing application_name="snowflake-snowpark-python" ) return connection def run(session: Session): # Feel free to combine local/udtf ingestion and partition column/predicates # as stated in the understanding parallelism section # Call dbapi to pull data from target table df = session.read.dbapi( create_pg_connection, table="target_table" ) # Call dbapi to pull data from target query df_query = session.read.dbapi( create_pg_connection, query="select * from target_table" ) # Pull data from target table with parallelism using partition column df_local_par_column = session.read.dbapi( create_pg_connection, table="target_table", fetch_size=100000, num_partitions=4, column="ID", # swap with the column you want your partition based on upper_bound=10000, lower_bound=0 ) udtf_configs = { "external_access_integration": "<your external access integration>" } # Pull data from target table with udtf ingestion with parallelism using predicates df_udtf_predicates = session.read.dbapi( create_pg_connection, table="target_table", udtf_configs=udtf_configs, fetch_size=100000, predicates=[ "ID < 3", "ID >= 3" ] ) return df $$; CALL sp_pg_dbapi();
Using DB-API to connect to PostgreSQL from a Snowflake notebook¶
Snowflake Notebookパッケージ で
snowflake-snowpark-pythonおよびpsycopg2を選択します。外部アクセス統合(EAI)を構成します。これは、Snowflakeがソースエンドポイントに接続できるようにするために必要です。
注釈
PrivateLink は、特に機密情報を扱う場合に、安全にデータを転送することをお勧めします。Snowflakeアカウントに必要なPrivateLink権限が有効になり、PrivateLink機能がSnowflake Notebook環境で構成され、アクティブになっていることを確認します。
シークレット、送信元エンドポイントへのエグレスを許可するネットワークルール、EAIを構成します。
-- Configure the secret CREATE OR REPLACE SECRET pg_secret TYPE = PASSWORD USERNAME = 'pg_username' PASSWORD = 'pg_password'; ALTER NOTEBOOK pg_notebook SET SECRETS = ('snowflake-secret-object' = pg_secret); -- Configure the network rule to allow egress to the source endpoint CREATE OR REPLACE NETWORK RULE pg_network_rule MODE = EGRESS TYPE = HOST_PORT VALUE_LIST = ('pg_host:pg_port'); -- Configure external access integration CREATE OR REPLACE EXTERNAL ACCESS INTEGRATION pg_access_integration ALLOWED_NETWORK_RULES = (pg_network_rule) ALLOWED_AUTHENTICATION_SECRETS = (pg_secret) ENABLED = true;
Snowflake Notebooks の外部アクセスの設定 、ノートブックセッションを再起動します。
Use the DB-API to pull data from PostgreSQL in a Python cell of a Snowflake notebook:
# Get the user name and password from :code:`pg_secret` import _snowflake username_password_object = _snowflake.get_username_password('snowflake-secret-object') USER = username_password_object.username PASSWORD = username_password_object.password import snowflake.snowpark.context session = snowflake.snowpark.context.get_active_session() # Define the factory method for creating a connection to PostgreSQL def create_pg_connection(): import psycopg2 connection = psycopg2.connect( host="pg_host", port=pg_port, dbname="pg_dbname", user=USER, password=PASSWORD, # Optional: include this parameter for source tracing application_name="snowflake-snowpark-python" ) return connection # Feel free to combine local/udtf ingestion and partition column/predicates as # stated in the understanding parallelism section # Call dbapi to pull data from target table df = session.read.dbapi( create_pg_connection, table="target_table" ) # Call dbapi to pull data from target query df_query = session.read.dbapi( create_pg_connection, query="select * from target_table" ) # Pull data from target table with parallelism using partition column df_local_par_column = session.read.dbapi( create_pg_connection, table="target_table", fetch_size=100000, num_partitions=4, column="ID", # swap with the column you want your partition based on upper_bound=10000, lower_bound=0 ) udtf_configs = { "external_access_integration": "<your external access integration>" } # Pull data from target table with udtf ingestion with parallelism using predicates df_udtf_predicates = session.read.dbapi( create_pg_connection, table="target_table", udtf_configs=udtf_configs, fetch_size=100000, predicates=[ "ID < 3", "ID >= 3" ] ) # Save data into sf_table df.write.mode("overwrite").save_as_table('sf_table') # Get the user name and password from :code:`pg_secret`
Source tracing when using DB-API to connect to PostgreSQL¶
Include a tag of Snowpark in your create connection function.
def create_pg_connection(): import psycopg2 connection = psycopg2.connect( host="pg_host", port=pg_port, dbname="pg_dbname", user="pg_user", password="pg_password", # Include this parameter for source tracing application_name="snowflake-snowpark-python" ) return connection
Run the following SQL in your data source to capture queries from Snowpark that are still live:
SELECT pid, usename AS username, datname AS database, application_name, client_addr, state, query_start, query FROM pg_stat_activity WHERE application_name = 'snowflake-snowpark-python';
MySQL¶
MySQLに接続するには、Snowparkからは、次の2つのパッケージが必要です。
Snowpark:Snowflake-snowpark-python[pandas]
オープンソースのpymysqlライブラリ:PyMySQL
以下のコード例では、Snowparkクライアント、ストアドプロシージャ、Snowflake NotebookからMySQLに接続する方法を示します。
DB-APIを使用して、SnowparkクライアントからMySQLに接続する¶
pymysqlをインストールします。
pip install snowflake-snowpark-python[pandas] pip install pymysql
MySQLへの接続を作成するファクトリーメソッドを定義します。
def create_mysql_connection(): import pymysql connection = pymysql.connect( host="mysql_host", port=mysql_port, database="mysql_db", user="mysql_user", password="mysql_password", # Optional: include this parameter for source tracing init_command="SET @program_name='snowflake-snowpark-python';" ) return connection # Feel free to combine local/udtf ingestion and partition column/predicates as # stated in the understanding parallelism section # Call dbapi to pull data from target table df = session.read.dbapi( create_mysql_connection, table="target_table" ) # Call dbapi to pull data from target query df_query = session.read.dbapi( create_mysql_connection, query="select * from target_table" ) # Pull data from target table with parallelism using partition column df_local_par_column = session.read.dbapi( create_mysql_connection, table="target_table", fetch_size=100000, num_partitions=4, column="ID", # swap with the column you want your partition based on upper_bound=10000, lower_bound=0 ) udtf_configs = { "external_access_integration": "<your external access integration>" } # Pull data from target table with udtf ingestion with parallelism using predicates df_udtf_predicates = session.read.dbapi( create_mysql_connection, table="target_table", udtf_configs=udtf_configs, fetch_size=100000, predicates=[ "ID < 3", "ID >= 3" ] )
Using DB-API to connect to MySQL from a stored procedure¶
外部アクセス統合(EAI)を構成します。これは、Snowflakeがソースエンドポイントに接続できるようにするために必要です。
注釈
PrivateLink は、特に機密情報を扱う場合に、安全にデータを転送することをお勧めします。Snowflakeアカウントに必要なPrivateLink権限が有効になり、PrivateLink機能がSnowflake Notebook環境で構成され、アクティブになっていることを確認します。
シークレット、送信元エンドポイントへのエグレスを許可するネットワークルール、EAIを構成します。
CREATE OR REPLACE SECRET mysql_secret TYPE = PASSWORD USERNAME = 'mysql_username' PASSWORD = 'mysql_password'; -- configure a network rule. CREATE OR REPLACE NETWORK RULE mysql_network_rule MODE = EGRESS TYPE = HOST_PORT VALUE_LIST = ('mysql_host:mysql_port'); -- configure an external access integration CREATE OR REPLACE EXTERNAL ACCESS INTEGRATION mysql_access_integration ALLOWED_NETWORK_RULES = (mysql_network_rule) ALLOWED_AUTHENTICATION_SECRETS = (mysql_secret) ENABLED = true;
Snowpark Python DB-APIを使用して、Pythonストアドプロシージャ内でMySQLからデータを取得します。
CREATE OR REPLACE PROCEDURE sp_mysql_dbapi() RETURNS TABLE() LANGUAGE PYTHON RUNTIME_VERSION='3.11' HANDLER='run' PACKAGES=('snowflake-snowpark-python', 'pymysql') EXTERNAL_ACCESS_INTEGRATIONS = (mysql_access_integration) SECRETS = ('cred' = mysql_secret ) AS $$ # Get user name and password from mysql_secret import _snowflake username_password_object = _snowflake.get_username_password('cred') USER = username_password_object.username PASSWORD = username_password_object.password # Define the factory method for creating a connection to MySQL from snowflake.snowpark import session def create_mysql_connection(): import pymysql connection = pymysql.connect( host="mysql_host", port=mysql_port, dbname="mysql_dbname", user=USER, password=PASSWORD, # Optional: include this parameter for source tracing init_command="SET @program_name='snowflake-snowpark-python';" ) return connection # Using Snowpark Python DB-API to pull data from MySQL in a Python stored procedure. def run(session: Session): # Feel free to combine local/udtf ingestion and partition column/predicates # as stated in the understanding parallelism section # Call dbapi to pull data from target table df = session.read.dbapi( create_mysql_connection, table="target_table" ) # Call dbapi to pull data from target query df_query = session.read.dbapi( create_mysql_connection, query="select * from target_table" ) # Pull data from target table with parallelism using partition column df_local_par_column = session.read.dbapi( create_mysql_connection, table="target_table", fetch_size=100000, num_partitions=4, column="ID", # swap with the column you want your partition based on upper_bound=10000, lower_bound=0 ) udtf_configs = { "external_access_integration": "<your external access integration>" } # Pull data from target table with udtf ingestion with parallelism using predicates df_udtf_predicates = session.read.dbapi( create_mysql_connection, table="target_table", udtf_configs=udtf_configs, fetch_size=100000, predicates=[ "ID < 3", "ID >= 3" ] ) return df $$; CALL sp_mysql_dbapi();
Using DB-API to connect to MySQL from a Snowflake notebook¶
Snowflake Notebookパッケージ で
snowflake-snowpark-pythonおよびpymysqlを選択します。外部アクセス統合(EAI)を構成します。これは、Snowflakeがソースエンドポイントに接続できるようにするために必要です。
注釈
PrivateLink は、特に機密情報を扱う場合に、安全にデータを転送することをお勧めします。Snowflakeアカウントに必要なPrivateLink権限が有効になり、PrivateLink機能がSnowflake Notebook環境で構成され、アクティブになっていることを確認します。
シークレット、送信元エンドポイントへのエグレスを許可するネットワークルール、EAIを構成します。
CREATE OR REPLACE SECRET mysql_secret TYPE = PASSWORD USERNAME = 'mysql_username' PASSWORD = 'mysql_password'; ALTER NOTEBOOK mynotebook SET SECRETS = ('snowflake-secret-object' = mysql_secret); -- configure a network rule. CREATE OR REPLACE NETWORK RULE mysql_network_rule MODE = EGRESS TYPE = HOST_PORT VALUE_LIST = ('mysql_host:mysql_port'); -- configure an EAI CREATE OR REPLACE EXTERNAL ACCESS INTEGRATION mysql_access_integration ALLOWED_NETWORK_RULES = (mysql_network_rule) ALLOWED_AUTHENTICATION_SECRETS = (mysql_secret) ENABLED = true;
Snowflake Notebooks の外部アクセスの設定 、ノートブックセッションを再起動します。
Use the DB-API to pull data from MySQL in a Python cell of a Snowflake notebook:
# Get user name and password from mysql_secret import _snowflake username_password_object = _snowflake.get_username_password('snowflake-secret-object') USER = username_password_object.username PASSWORD = username_password_object.password import snowflake.snowpark.context session = snowflake.snowpark.context.get_active_session() # Define the factory method for creating a connection to MySQL def create_mysql_connection(): import pymysql connection = pymysql.connect( host="mysql_host", port=mysql_port, dbname="mysql_dbname", user=USER, password=PASSWORD, # Optional: include this parameter for source tracing init_command="SET @program_name='snowflake-snowpark-python';" ) return connection # Feel free to combine local/udtf ingestion and partition column/predicates as # stated in the understanding parallelism section # Call dbapi to pull data from target table df = session.read.dbapi( create_mysql_connection, table="target_table" ) # Call dbapi to pull data from target query df_query = session.read.dbapi( create_mysql_connection, query="select * from target_table" ) # Pull data from target table with parallelism using partition column df_local_par_column = session.read.dbapi( create_mysql_connection, table="target_table", fetch_size=100000, num_partitions=4, column="ID", # swap with the column you want your partition based on upper_bound=10000, lower_bound=0 ) udtf_configs = { "external_access_integration": "<your external access integration>" } # Pull data from target table with udtf ingestion with parallelism using predicates df_udtf_predicates = session.read.dbapi( create_mysql_connection, table="target_table", udtf_configs=udtf_configs, fetch_size=100000, predicates=[ "ID < 3", "ID >= 3" ] ) # Save data into sf_table df.write.mode("overwrite").save_as_table('sf_table')
Source tracing when using DB-API to connect to MySQL¶
Include a tag of Snowpark in your create connection function.
def create_mysql_connection(): import pymysql connection = pymysql.connect( host="mysql_host", port=mysql_port, database="mysql_db", user="mysql_user", password="mysql_password", # include this parameter for source tracing init_command="SET @program_name='snowflake-snowpark-python';" ) return connection
Run the following SQL in your data source to capture queries from Snowpark:
SELECT * FROM performance_schema.events_statements_history_long WHERE THREAD_ID = ( SELECT THREAD_ID FROM performance_schema.events_statements_history_long WHERE SQL_TEXT = "SET @program_name='snowflake-snowpark-python'" ORDER BY EVENT_ID DESC LIMIT 1 )
Databricks¶
SnowparkからDatabricksに接続するには、次の2つのパッケージが必要です。
Snowpark:Snowflake-snowpark-python[pandas]
オープンソースのpyscopeg2ライブラリ: databricks-sql-connector
The following code examples show how to connect to Databricks from a Snowpark client, stored procedures, and a Snowflake notebook.
Using DB-API to connect to Databricks from a Snowpark client¶
Install databricks-sql-connector:
pip install snowflake-snowpark-python[pandas] pip install databricks-sql-connector
Databricksへの接続を作成するファクトリーメソッドを定義します。
def create_dbx_connection(): import databricks.sql connection = databricks.sql.connect( server_hostname=HOST, http_path=PATH, access_token=ACCESS_TOKEN ) return connection # Feel free to combine local/udtf ingestion and partition column/predicates as # stated in the understanding parallelism section # Call dbapi to pull data from target table df = session.read.dbapi( create_dbx_connection, table="target_table" ) # Call dbapi to pull data from target query df_query = session.read.dbapi( create_dbx_connection, query="select * from target_table" ) # Pull data from target table with parallelism using partition column df_local_par_column = session.read.dbapi( create_dbx_connection, table="target_table", fetch_size=100000, num_partitions=4, column="ID", # swap with the column you want your partition based on upper_bound=10000, lower_bound=0 ) udtf_configs = { "external_access_integration": "<your external access integration>" } # Pull data from target table with udtf ingestion with parallelism using predicates df_udtf_predicates = session.read.dbapi( create_dbx_connection, table="target_table", udtf_configs=udtf_configs, fetch_size=100000, predicates=[ "ID < 3", "ID >= 3" ] )
Using DB-API to connect to Databricks from a stored procedure¶
外部アクセス統合(EAI)を構成します。これは、Snowflakeがソースエンドポイントに接続できるようにするために必要です。
注釈
PrivateLink は、特に機密情報を扱う場合に、安全にデータを転送することをお勧めします。Snowflakeアカウントに必要なPrivateLink権限が有効になり、PrivateLink機能がSnowflake Notebook環境で構成され、アクティブになっていることを確認します。
シークレット、送信元エンドポイントへのエグレスを許可するネットワークルール、EAIを構成します。
CREATE OR REPLACE SECRET dbx_secret TYPE = GENERIC_STRING SECRET_STRING = 'dbx_access_token'; CREATE OR REPLACE NETWORK RULE dbx_network_rule MODE = EGRESS TYPE = HOST_PORT VALUE_LIST = ('dbx_host:dbx_port'); CREATE OR REPLACE EXTERNAL ACCESS INTEGRATION dbx_access_integration ALLOWED_NETWORK_RULES = (dbx_network_rule) ALLOWED_AUTHENTICATION_SECRETS = (dbx_secret) ENABLED = true;
Snowpark Python DB-APIを使用して、PythonストアドプロシージャでDatabricksからデータを取得します。
CREATE OR REPLACE PROCEDURE sp_dbx_dbapi() RETURNS TABLE() LANGUAGE PYTHON RUNTIME_VERSION='3.11' HANDLER='run' PACKAGES=('snowflake-snowpark-python', 'databricks-sql-connector') EXTERNAL_ACCESS_INTEGRATIONS = (dbx_access_integration) SECRETS = ('cred' = dbx_secret ) AS $$ # Get user name and password from dbx_secret import _snowflake ACCESS_TOKEN = _snowflake.get_generic_secret_string('cred') from snowflake.snowpark import Session # Define the method for creating a connection to Databricks def create_dbx_connection(): import databricks.sql connection = databricks.sql.connect( server_hostname="dbx_host", http_path="dbx_path", access_token=ACCESS_TOKEN, ) return connection # Using Snowpark Python DB-API to pull data from DataBricks in a Python stored procedure. def run(session: Session): # Feel free to combine local/udtf ingestion and partition column/predicates # as stated in the understanding parallelism section # Call dbapi to pull data from target table df = session.read.dbapi( create_dbx_connection, table="target_table" ) # Call dbapi to pull data from target query df_query = session.read.dbapi( create_dbx_connection, query="select * from target_table" ) # Pull data from target table with parallelism using partition column df_local_par_column = session.read.dbapi( create_dbx_connection, table="target_table", fetch_size=100000, num_partitions=4, column="ID", # swap with the column you want your partition based on upper_bound=10000, lower_bound=0 ) udtf_configs = { "external_access_integration": "<your external access integration>" } # Pull data from target table with udtf ingestion with parallelism using predicates df_udtf_predicates = session.read.dbapi( create_dbx_connection, table="target_table", udtf_configs=udtf_configs, fetch_size=100000, predicates=[ "ID < 3", "ID >= 3" ] ) return df $$; CALL sp_dbx_dbapi();
Using DB-API to connect to Databricks from a Snowflake notebook¶
From Snowflake Notebook packages, select
snowflake-snowpark-pythonanddatabricks-sql-connector.外部アクセス統合(EAI)を構成します。これは、Snowflakeがソースエンドポイントに接続できるようにするために必要です。
注釈
PrivateLink は、特に機密情報を扱う場合に、安全にデータを転送することをお勧めします。Snowflakeアカウントに必要なPrivateLink権限が有効になり、PrivateLink機能がSnowflake Notebook環境で構成され、アクティブになっていることを確認します。
シークレット、送信元エンドポイントへのエグレスを許可するネットワークルール、EAIを構成します。
CREATE OR REPLACE SECRET dbx_secret TYPE = GENERIC_STRING SECRET_STRING = 'dbx_access_token'; ALTER NOTEBOOK mynotebook SET SECRETS = ('snowflake-secret-object' = dbx_secret); CREATE OR REPLACE NETWORK RULE dbx_network_rule MODE = EGRESS TYPE = HOST_PORT VALUE_LIST = ('dbx_host:dbx_port'); CREATE OR REPLACE EXTERNAL ACCESS INTEGRATION dbx_access_integration ALLOWED_NETWORK_RULES = (dbx_network_rule) ALLOWED_AUTHENTICATION_SECRETS = (dbx_secret) ENABLED = true;
Snowflake Notebooks の外部アクセスの設定 、ノートブックセッションを再起動します。
Use the DB-API to pull data from Databricks in a Python cell of a Snowflake notebook:
# Get user name and password from dbx_secret import _snowflake ACCESS_TOKEN = _snowflake.get_generic_secret_string('cred') import snowflake.snowpark.context session = snowflake.snowpark.context.get_active_session() # Define the factory method for creating a connection to Databricks def create_dbx_connection(): import databricks.sql connection = databricks.sql.connect( server_hostname="dbx_host", http_path="dbx_path", access_token=ACCESS_TOKEN, ) return connection # Feel free to combine local/udtf ingestion and partition column/predicates as # stated in the understanding parallelism section # Call dbapi to pull data from target table df = session.read.dbapi( create_dbx_connection, table="target_table" ) # Call dbapi to pull data from target query df_query = session.read.dbapi( create_dbx_connection, query="select * from target_table" ) # Pull data from target table with parallelism using partition column df_local_par_column = session.read.dbapi( create_dbx_connection, table="target_table", fetch_size=100000, num_partitions=4, column="ID", # swap with the column you want your partition based on upper_bound=10000, lower_bound=0 ) udtf_configs = { "external_access_integration": "<your external access integration>" } # Pull data from target table with udtf ingestion with parallelism using predicates df_udtf_predicates = session.read.dbapi( create_dbx_connection, table="target_table", udtf_configs=udtf_configs, fetch_size=100000, predicates=[ "ID < 3", "ID >= 3" ] ) # Save data into sf_table df.write.mode("overwrite").save_as_table('sf_table')
Source tracing when using DB-API to connect to Databricks¶
Include a tag of Snowpark in your create connection function.
def create_dbx_connection(): import databricks.sql connection = databricks.sql.connect( server_hostname=HOST, http_path=PATH, access_token=ACCESS_TOKEN, # include this parameter for source tracing user_agent_entry="snowflake-snowpark-python" ) return connection
Navigate to query history on the DataBricks console and search for the query whose source is
snowflake-snowpark-python.
制限事項¶
Snowpark Python DB-APIは、Python DB-API 2.0準拠のドライバー(例: pyodbc または Oracledb )のみをサポートしています。JDBCドライバーはこのリリースではサポートされていません。