snowflake.ml.modeling.linear_model.SGDClassifier

class snowflake.ml.modeling.linear_model.SGDClassifier(*, loss='hinge', penalty='l2', alpha=0.0001, l1_ratio=0.15, fit_intercept=True, max_iter=1000, tol=0.001, shuffle=True, verbose=0, epsilon=0.1, n_jobs=None, random_state=None, learning_rate='optimal', eta0=0.0, power_t=0.5, early_stopping=False, validation_fraction=0.1, n_iter_no_change=5, class_weight=None, warm_start=False, average=False, input_cols: Optional[Union[str, Iterable[str]]] = None, output_cols: Optional[Union[str, Iterable[str]]] = None, label_cols: Optional[Union[str, Iterable[str]]] = None, passthrough_cols: Optional[Union[str, Iterable[str]]] = None, drop_input_cols: Optional[bool] = False, sample_weight_col: Optional[str] = None)

Bases: BaseTransformer

Linear classifiers (SVM, logistic regression, etc For more details on this class, see sklearn.linear_model.SGDClassifier

input_cols: Optional[Union[str, List[str]]]

A string or list of strings representing column names that contain features. If this parameter is not specified, all columns in the input DataFrame except the columns specified by label_cols, sample_weight_col, and passthrough_cols parameters are considered input columns. Input columns can also be set after initialization with the set_input_cols method.

label_cols: Optional[Union[str, List[str]]]

A string or list of strings representing column names that contain labels. Label columns must be specified with this parameter during initialization or with the set_label_cols method before fitting.

output_cols: Optional[Union[str, List[str]]]

A string or list of strings representing column names that will store the output of predict and transform operations. The length of output_cols must match the expected number of output columns from the specific predictor or transformer class used. If you omit this parameter, output column names are derived by adding an OUTPUT_ prefix to the label column names for supervised estimators, or OUTPUT_<IDX>for unsupervised estimators. These inferred output column names work for predictors, but output_cols must be set explicitly for transformers. In general, explicitly specifying output column names is clearer, especially if you don’t specify the input column names. To transform in place, pass the same names for input_cols and output_cols. be set explicitly for transformers. Output columns can also be set after initialization with the set_output_cols method.

sample_weight_col: Optional[str]

A string representing the column name containing the sample weights. This argument is only required when working with weighted datasets. Sample weight column can also be set after initialization with the set_sample_weight_col method.

passthrough_cols: Optional[Union[str, List[str]]]

A string or a list of strings indicating column names to be excluded from any operations (such as train, transform, or inference). These specified column(s) will remain untouched throughout the process. This option is helpful in scenarios requiring automatic input_cols inference, but need to avoid using specific columns, like index columns, during training or inference. Passthrough columns can also be set after initialization with the set_passthrough_cols method.

drop_input_cols: Optional[bool], default=False

If set, the response of predict(), transform() methods will not contain input columns.

loss: {‘hinge’, ‘log_loss’, ‘modified_huber’, ‘squared_hinge’, ‘perceptron’, ‘squared_error’, ‘huber’, ‘epsilon_insensitive’, ‘squared_epsilon_insensitive’}, default=’hinge’

The loss function to be used.

  • ‘hinge’ gives a linear SVM.

  • ‘log_loss’ gives logistic regression, a probabilistic classifier.

  • ‘modified_huber’ is another smooth loss that brings tolerance to outliers as well as probability estimates.

  • ‘squared_hinge’ is like hinge but is quadratically penalized.

  • ‘perceptron’ is the linear loss used by the perceptron algorithm.

  • The other losses, ‘squared_error’, ‘huber’, ‘epsilon_insensitive’ and ‘squared_epsilon_insensitive’ are designed for regression but can be useful in classification as well; see SGDRegressor for a description.

More details about the losses formulas can be found in the User Guide.

penalty: {‘l2’, ‘l1’, ‘elasticnet’, None}, default=’l2’

The penalty (aka regularization term) to be used. Defaults to ‘l2’ which is the standard regularizer for linear SVM models. ‘l1’ and ‘elasticnet’ might bring sparsity to the model (feature selection) not achievable with ‘l2’. No penalty is added when set to None.

alpha: float, default=0.0001

Constant that multiplies the regularization term. The higher the value, the stronger the regularization. Also used to compute the learning rate when learning_rate is set to ‘optimal’. Values must be in the range [0.0, inf).

l1_ratio: float, default=0.15

The Elastic Net mixing parameter, with 0 <= l1_ratio <= 1. l1_ratio=0 corresponds to L2 penalty, l1_ratio=1 to L1. Only used if penalty is ‘elasticnet’. Values must be in the range [0.0, 1.0].

fit_intercept: bool, default=True

Whether the intercept should be estimated or not. If False, the data is assumed to be already centered.

max_iter: int, default=1000

The maximum number of passes over the training data (aka epochs). It only impacts the behavior in the fit method, and not the partial_fit() method. Values must be in the range [1, inf).

tol: float or None, default=1e-3

The stopping criterion. If it is not None, training will stop when (loss > best_loss - tol) for n_iter_no_change consecutive epochs. Convergence is checked against the training loss or the validation loss depending on the early_stopping parameter. Values must be in the range [0.0, inf).

shuffle: bool, default=True

Whether or not the training data should be shuffled after each epoch.

verbose: int, default=0

The verbosity level. Values must be in the range [0, inf).

epsilon: float, default=0.1

Epsilon in the epsilon-insensitive loss functions; only if loss is ‘huber’, ‘epsilon_insensitive’, or ‘squared_epsilon_insensitive’. For ‘huber’, determines the threshold at which it becomes less important to get the prediction exactly right. For epsilon-insensitive, any differences between the current prediction and the correct label are ignored if they are less than this threshold. Values must be in the range [0.0, inf).

n_jobs: int, default=None

The number of CPUs to use to do the OVA (One Versus All, for multi-class problems) computation. None means 1 unless in a joblib.parallel_backend context. -1 means using all processors. See Glossary for more details.

random_state: int, RandomState instance, default=None

Used for shuffling the data, when shuffle is set to True. Pass an int for reproducible output across multiple function calls. See Glossary. Integer values must be in the range [0, 2**32 - 1].

learning_rate: str, default=’optimal’

The learning rate schedule:

  • ‘constant’: eta = eta0

  • ‘optimal’: eta = 1.0 / (alpha * (t + t0)) where t0 is chosen by a heuristic proposed by Leon Bottou.

  • ‘invscaling’: eta = eta0 / pow(t, power_t)

  • ‘adaptive’: eta = eta0, as long as the training keeps decreasing. Each time n_iter_no_change consecutive epochs fail to decrease the training loss by tol or fail to increase validation score by tol if early_stopping is True, the current learning rate is divided by 5.

eta0: float, default=0.0

The initial learning rate for the ‘constant’, ‘invscaling’ or ‘adaptive’ schedules. The default value is 0.0 as eta0 is not used by the default schedule ‘optimal’. Values must be in the range (0.0, inf).

power_t: float, default=0.5

The exponent for inverse scaling learning rate [default 0.5]. Values must be in the range (-inf, inf).

early_stopping: bool, default=False

Whether to use early stopping to terminate training when validation score is not improving. If set to True, it will automatically set aside a stratified fraction of training data as validation and terminate training when validation score returned by the score method is not improving by at least tol for n_iter_no_change consecutive epochs.

validation_fraction: float, default=0.1

The proportion of training data to set aside as validation set for early stopping. Must be between 0 and 1. Only used if early_stopping is True. Values must be in the range (0.0, 1.0).

n_iter_no_change: int, default=5

Number of iterations with no improvement to wait before stopping fitting. Convergence is checked against the training loss or the validation loss depending on the early_stopping parameter. Integer values must be in the range [1, max_iter).

class_weight: dict, {class_label: weight} or “balanced”, default=None

Preset for the class_weight fit parameter.

Weights associated with classes. If not given, all classes are supposed to have weight one.

The “balanced” mode uses the values of y to automatically adjust weights inversely proportional to class frequencies in the input data as n_samples / (n_classes * np.bincount(y)).

warm_start: bool, default=False

When set to True, reuse the solution of the previous call to fit as initialization, otherwise, just erase the previous solution. See the Glossary.

Repeatedly calling fit or partial_fit when warm_start is True can result in a different solution than when calling fit a single time because of the way the data is shuffled. If a dynamic learning rate is used, the learning rate is adapted depending on the number of samples already seen. Calling fit resets this counter, while partial_fit will result in increasing the existing counter.

average: bool or int, default=False

When set to True, computes the averaged SGD weights across all updates and stores the result in the coef_ attribute. If set to an int greater than 1, averaging will begin once the total number of samples seen reaches average. So average=10 will begin averaging after seeing 10 samples. Integer values must be in the range [1, n_samples].

Methods

decision_function(dataset[, output_cols_prefix])

Predict confidence scores for samples For more details on this function, see sklearn.linear_model.SGDClassifier.decision_function

fit(dataset)

Fit linear model with Stochastic Gradient Descent For more details on this function, see sklearn.linear_model.SGDClassifier.fit

get_input_cols()

Input columns getter.

get_label_cols()

Label column getter.

get_output_cols()

Output columns getter.

get_params([deep])

Get parameters for this transformer.

get_passthrough_cols()

Passthrough columns getter.

get_sample_weight_col()

Sample weight column getter.

get_sklearn_args([default_sklearn_obj, ...])

Get sklearn keyword arguments.

predict(dataset)

Predict class labels for samples in X For more details on this function, see sklearn.linear_model.SGDClassifier.predict

predict_log_proba(dataset[, output_cols_prefix])

Probability estimates For more details on this function, see sklearn.linear_model.SGDClassifier.predict_proba

predict_proba(dataset[, output_cols_prefix])

Probability estimates For more details on this function, see sklearn.linear_model.SGDClassifier.predict_proba

score(dataset)

Return the mean accuracy on the given test data and labels For more details on this function, see sklearn.linear_model.SGDClassifier.score

set_drop_input_cols([drop_input_cols])

set_input_cols(input_cols)

Input columns setter.

set_label_cols(label_cols)

Label column setter.

set_output_cols(output_cols)

Output columns setter.

set_params(**params)

Set the parameters of this transformer.

set_passthrough_cols(passthrough_cols)

Passthrough columns setter.

set_sample_weight_col(sample_weight_col)

Sample weight column setter.

to_sklearn()

Get sklearn.linear_model.SGDClassifier object.

Attributes

model_signatures

Returns model signature of current class.