Servidor MCP gerenciado pelo Snowflake¶
Visão geral¶
Nota
Snowflake oferece suporte à revisão do protocolo de contexto do modelo 2025-06-18.
Protocolo de contexto do modelo (MCP), é um padrão de código aberto que permite que os agentes de AI interajam de forma segura com aplicativos comerciais e sistemas de dados externos, como bancos de dados e repositórios de conteúdo. o MCP permite que as empresas reduzam os desafios de integração e forneçam resultados rapidamente a partir de modelos. Desde seu lançamento, o MCP tornou-se fundamental para aplicativos de agente, fornecendo um mecanismo consistente e seguro para invocar ferramentas e recuperar dados.
The Snowflake-managed MCP server lets AI agents securely retrieve data from Snowflake accounts without needing to deploy separate infrastructure. You can configure the MCP server to serve Cortex Analyst, Cortex Search, and Cortex Agents as tools, along with custom tools and SQL executions on the standards-based interface. MCP clients discover and invoke these tools, and retrieve data required for the application. With managed MCP servers on Snowflake, you can build scalable enterprise-grade applications while maintaining access and privacy controls. The MCP server on Snowflake provides:
Integração padronizada: interface unificada para descoberta e invocação de ferramentas, em conformidade com os padrões em rápida evolução.
Autenticação abrangente: serviço OAuth integrado do Snowflake para permitir a autenticação baseada em OAuth para integrações MCP.
Governança robusta: controle de acesso baseado em função (RBAC) para servidor MCP e ferramentas para gerenciar a descoberta e a invocação de ferramentas.
Para obter mais informações sobre o ciclo de vida do MCP, consulte Ciclo de vida. Para um exemplo de uma implementação do MCP, consulte o guia de início rápido Introdução ao servidor MCP gerenciado pelo Snowflake.
MCP server security recommendations¶
Importante
When you configure hostnames for MCP server connections, use hyphens (-) instead of underscores (_). MCP servers have connection issues with hostnames containing underscores.
Using multiple MCP servers without verifying tools and descriptions could lead to vulnerabilities such as tool poisoning or tool shadowing. Snowflake recommends verifying third-party MCP servers before using them. This includes any MCP server from another Snowflake user or account. Verify all tools offered by third-party MCP servers.
We recommend using OAuth as the authentication method. Using hardcoded tokens can lead to token leakage.
When using a Programmatic Access Token (PAT), set it to use the least-privileged role allowed to work with MCP. This will help prevent leaking a secret with access to a highly-privileged role.
Configure proper permissions for the MCP server and tools following the least-privilege principle. Access to the MCP Server does not give access to the tools. Permission needs to be granted for each tool.
Criar uma objeto do servidor MCP¶
Crie um objeto especificando as ferramentas e outros metadados. Os clientes MCP que se conectam ao servidor, após a autenticação necessária, podem descobrir e invocar essas ferramentas.
Navegue até o banco de dados e esquema desejados para criar o servidor MCP.
Criar o servidor MCP:
CREATE [ OR REPLACE ] MCP SERVER [ IF NOT EXISTS ] <server_name> FROM SPECIFICATION $$ tools: - name: "product-search" type: "CORTEX_SEARCH_SERVICE_QUERY" identifier: "database1.schema1.Cortex_Search_Service1" description: "cortex search service for all products" title: "Product Search" - name: "revenue-semantic-view" type: "CORTEX_ANALYST_MESSAGE" identifier: "database1.schema1.Semantic_View_1" description: "Semantic view for all revenue tables" title: "Semantic view for revenue" $$
Atualmente, o Snowflake oferece suporte aos seguintes tipos de ferramentas:
CORTEX_SEARCH_SERVICE_QUERY: ferramenta Cortex Search Service
CORTEX_ANALYST_MESSAGE: ferramenta Cortex Analyst
SYSTEM_EXECUTE_SQL: SQL execution
CORTEX_AGENT_RUN: Cortex Agent tool
GENERIC: tool for UDFs and stored procedures
The following examples show how to configure different tool types:
Using the Analyst tool, your client can generate text from SQL. Use the following code to specify the tool configuration.
Nota
The Snowflake-managed MCP server only supports using semantic views with Cortex Analyst. It does not support semantic models.
tools: - name: "revenue-semantic-view" type: "CORTEX_ANALYST_MESSAGE" identifier: "database1.schema1.Semantic_View_1" description: "Semantic view for all revenue tables" title: "Semantic view for revenue"Using the Search tool requests, your client can perform unstructured search on their data.
tools: - name: "product-search" type: "CORTEX_SEARCH_SERVICE_QUERY" identifier: "database1.schema1.Cortex_Search_Service1" description: "cortex search service for all products" title: "Product Search"For the SQL execution tool, your client can execute SQL queries on Snowflake. Use the following code to specify the tool configuration.
tools: - title: "SQL Execution Tool" name: "sql_exec_tool" type: "SYSTEM_EXECUTE_SQL" description: "A tool to execute SQL queries against the connected Snowflake database."For the Agent tool, your client passes a message to the agent. The agent processes the request and returns a response. Use the following code to specify the tool configuration.
tools: - title: "Agent V2" name: "agent_1" type: "CORTEX_AGENT_RUN" identifier: "db.schema.agent" description: "agent that gives the ability to..."For your custom tools, you must provide the user-defined function (UDF) or stored procedure signature in the tool configuration. The custom tool enables you to invoke UDFs and stored procedures as tools through the MCP server.
You need to specify the following in the tool configuration:
type:functionfor UDF,procedurefor stored procedure
Warehouse
Input schema: corresponds to the function signature
Use the following examples to create and configure custom tools using UDFs and stored procedures:
The following examples demonstrate creating UDFs that can be used as custom tools:
-- create a simple udf
CREATE OR REPLACE FUNCTION MULTIPLY_BY_TEN(x FLOAT)
RETURNS FLOAT
LANGUAGE PYTHON
RUNTIME_VERSION = '3.8'
HANDLER = 'multiply_by_ten'
AS
$$
def multiply_by_ten(x: float) -> float:
return x * 10
$$;
SHOW FUNCTIONS LIKE 'MULTIPLY_BY_TEN';
-- test return json/variant
CREATE OR REPLACE FUNCTION CALCULATE_PRODUCT_AND_SUM(x FLOAT, y FLOAT)
RETURNS VARIANT
LANGUAGE PYTHON
RUNTIME_VERSION = '3.8'
HANDLER = 'calculate_values'
AS
$$
import json
def calculate_values(x: float, y: float) -> dict:
"""
Calculates the product and sum of two numbers and returns them in a dictionary.
The dictionary is converted to a VARIANT (JSON) in the SQL return.
"""
product = x * y
sum_val = x + y
return {
"product": product,
"sum": sum_val
}
$$;
-- test return list/array
CREATE OR REPLACE FUNCTION GET_NUMBERS_IN_RANGE(x FLOAT, y FLOAT)
RETURNS ARRAY -- Use ARRAY to explicitly state a list is being returned
LANGUAGE PYTHON
RUNTIME_VERSION = '3.8'
HANDLER = 'get_numbers'
AS
$$
def get_numbers(x: float, y: float) -> list:
"""
Returns a list of integers between x (exclusive) and y (inclusive).
Assumes x < y.
"""
# Ensure x and y are treated as integers for range generation
start = int(x) + 1
end = int(y) + 1 # range() is exclusive on the stop value
# Use a list comprehension to generate the numbers
# The Python list will be converted to a Snowflake ARRAY.
return list(range(start, end))
$$;
The following examples demonstrate creating stored procedures that can be used as custom tools:
-- create a simple stored procedure
CREATE OR REPLACE PROCEDURE MULTIPLY_BY_TEN_SP(x FLOAT)
RETURNS FLOAT
LANGUAGE PYTHON
RUNTIME_VERSION = '3.8'
PACKAGES = ('snowflake-snowpark-python')
HANDLER = 'multiply_by_ten'
AS
$$
# The handler logic is identical to the UDF for a scalar return
def multiply_by_ten(x: float) -> float:
return x * 10
$$;
-- test return json/variant
CREATE OR REPLACE PROCEDURE CALCULATE_VALUES_SP(x FLOAT, y FLOAT)
RETURNS VARIANT
LANGUAGE PYTHON
RUNTIME_VERSION = '3.8'
PACKAGES = ('snowflake-snowpark-python')
HANDLER = 'calculate_values'
AS
$$
# The handler logic is identical to the UDF for a VARIANT return
def calculate_values(x: float, y: float) -> dict:
"""
Calculates the product and sum of two numbers and returns them in a dictionary.
The dictionary is converted to a VARIANT (JSON) in the SQL return.
"""
product = x * y
sum_val = x + y
return {
"product": product,
"sum": sum_val
}
$$;
-- test return list/array
CREATE OR REPLACE PROCEDURE GET_NUMBERS_SP(x FLOAT, y FLOAT)
RETURNS ARRAY
LANGUAGE PYTHON
RUNTIME_VERSION = '3.8'
PACKAGES = ('snowflake-snowpark-python')
HANDLER = 'get_numbers'
AS
$$
def get_numbers(x: float, y: float) -> list:
"""
Returns a list of integers between x (exclusive) and y (inclusive).
The Python list will be converted to a Snowflake ARRAY.
"""
# Ensure x and y are treated as integers for range generation
start = int(x) + 1
end = int(y) + 1 # range() is exclusive on the stop value
# Use a list comprehension to generate the numbers
return list(range(start, end))
$$;
The following examples demonstrate configuring custom tools for UDFs and stored procedures:
CREATE MCP SERVER my_mcp_server
FROM SPECIFICATION $$
tools:
- title: "Custom Tool 1"
identifier: "EXAMPLE_DATABASE.AGENTS.MULTIPLY_BY_TEN"
name: "multiply_by_ten"
type: "GENERIC"
description: "Multiplied input value by ten and returns the result."
config:
type: "function"
warehouse: "COMPUTE_SERVICE_WAREHOUSE"
input_schema:
type: "object"
properties:
x:
description: "A number to be multiplied by ten"
type: "number"
- title: "Custom Tool 2"
identifier: "EXAMPLE_DATABASE.AGENTS.CALCULATE_PRODUCT_AND_SUM"
name: "calculate_product_and_sum"
type: "GENERIC"
description: "Calculates the product and sum of two numbers and returns them in a JSON object."
config:
type: "function"
warehouse: "COMPUTE_SERVICE_WAREHOUSE"
input_schema:
type: "object"
properties:
x:
description: "First number"
type: "number"
y:
description: "Second number"
type: "number"
- title: "Custom Tool 3"
identifier: "EXAMPLE_DATABASE.AGENTS.GET_NUMBERS_IN_RANGE"
name: "get_numbers_in_range"
type: "GENERIC"
description: "Returns a list of integers between two numbers."
config:
type: "function"
warehouse: "COMPUTE_SERVICE_WAREHOUSE"
input_schema:
type: "object"
properties:
x:
description: "Start number (exclusive)"
type: "number"
y:
description: "End number (inclusive)"
type: "number"
- title: "Custom Tool 4"
identifier: "EXAMPLE_DATABASE.AGENTS.MULTIPLY_BY_TEN_SP"
name: "multiply_by_ten_sp"
type: "GENERIC"
description: "Multiplied input value by ten and returns the result."
config:
type: "procedure"
warehouse: "COMPUTE_SERVICE_WAREHOUSE"
input_schema:
type: "object"
properties:
x:
description: "A number to be multiplied by ten"
type: "number"
- title: "Custom Tool 5"
identifier: "EXAMPLE_DATABASE.AGENTS.CALCULATE_PRODUCT_AND_SUM_SP"
name: "calculate_product_and_sum_sp"
type: "GENERIC"
description: "Calculates the product and sum of two numbers and returns them in a JSON object."
config:
type: "procedure"
warehouse: "COMPUTE_SERVICE_WAREHOUSE"
input_schema:
type: "object"
properties:
x:
description: "First number"
type: "number"
y:
description: "Second number"
type: "number"
- title: "Custom Tool 6"
identifier: "EXAMPLE_DATABASE.AGENTS.GET_NUMBERS_IN_RANGE_SP"
name: "get_numbers_in_range_sp"
type: "GENERIC"
description: "Returns a list of integers between two numbers."
config:
type: "procedure"
warehouse: "COMPUTE_SERVICE_WAREHOUSE"
input_schema:
type: "object"
properties:
x:
description: "Start number (exclusive)"
type: "number"
y:
description: "End number (inclusive)"
type: "number"
$$;
Para mostrar servidores MCP, use os seguintes comandos:
SHOW MCP SERVERS IN DATABASE <database_name>; SHOW MCP SERVERS IN SCHEMA <schema_name>; SHOW MCP SERVERS IN ACCOUNT;
The following shows the output of the command:
| created_on | name | database_name | schema_name | owner | comment | ------------------------------------------+-------------------+---------------+-------------+--------------+------------------------------ | Fri, 23 Jun 1967 07:00:00.123000 +0000 | TEST_MCP_SERVER | TEST_DATABASE | TEST_SCHEMA | ACCOUNTADMIN | [NULL] | | Fri, 23 Jun 1967 07:00:00.123000 +0000 | TEST_MCP_SERVER_2 | TEST_DATABASE | TEST_SCHEMA | ACCOUNTADMIN | Test MCP server with comment |
Para descrever um servidor MCP, use o seguinte comando:
DESCRIBE MCP SERVER <server_name>;
The following shows the output of the command:
| name | database_name | schema_name | owner | comment | server_spec | created_on | ------------------------------------------------------------------------------------------------------+------------------------------------- | TEST_MCP_SERVER | TEST_DATABASE | TEST_SCHEMA | ACCOUNTADMIN | [NULL] | {"version":1,"tools":[{"name":"product-search","identifier":"db.schema.search_service","type":"CORTEX_SEARCH_SERVICE_QUERY"}]} | Fri, 23 Jun 1967 07:00:00.123000 +0000 |
Para descartar um servidor MCP, use o seguinte comando:
DROP MCP SERVER <server_name>;
Controle de acesso¶
Você pode usar os seguintes privilégios para gerenciar o acesso ao objeto MCP e as ferramentas subjacentes
Privilégio |
Objeto |
Descrição |
|---|---|---|
OWNERSHIP |
Objeto MCP |
Necessário para atualizar a configuração do objeto |
MODIFY |
Objeto MCP |
Fornece atualizar, descartar, descrever, mostrar e usar ( |
USAGE |
Objeto MCP |
Necessário para conectar-se ao servidor MCP e ferramentas de descoberta |
USAGE |
Cortex Search Service |
Necessário para invocar a ferramenta Cortex Search no servidor MCP |
SELECT |
Exibição semântica |
Necessário para invocar a ferramenta Cortex Analyst no servidor MCP |
USAGE |
Cortex Agent |
Required to invoke the Cortex Agent as a tool in the MCP server |
USAGE |
User-defined function (UDF) or stored procedure |
Required to invoke the UDF or stored procedure as a tool in the MCP server |
Configurar a autenticação OAuth¶
Configure a autenticação no cliente MCP. O servidor MCP gerenciado pelo Snowflake oferece suporte ao OAuth 2.0, alinhado com a recomendação de autorização no protocolo MCP. O servidor MCP gerenciado pelo Snowflake não oferece suporte ao registro dinâmico de clientes.
Primeiro, crie a integração de segurança. Para mais informações sobre esse comando, consulte CREATE SECURITY INTEGRATION (Snowflake OAuth).
CREATE [ OR REPLACE ] SECURITY INTEGRATION [IF NOT EXISTS] <integration_name> TYPE = OAUTH OAUTH_CLIENT = GENERIC ENABLED = TRUE OAUTH_CLIENT_TYPE = 'CONFIDENTIAL' OAUTH_REDIRECT_URI = '<redirect_URI>'
Em seguida, chame a função de sistema para recuperar seu ID de cliente e chaves para configuração do cliente. O nome da integração diferencia maiúsculas de minúsculas e deve estar em maiúsculas.
SELECT SYSTEM$SHOW_OAUTH_CLIENT_SECRETS('<integration_name>');
Interagir com o servidor MCP usando um cliente MCP personalizado¶
Se você estiver criando um cliente MCP personalizado, as seções a seguir demonstram os pontos de extremidade do Snowflake com os quais seu cliente interage.
Nota
Atualmente, o servidor MCP do Snowflake oferece suporte apenas aos recursos da ferramenta.
Inicialização do servidor MCP¶
Após a autenticação, inicialize o servidor emitindo chamadas GET e POST para o seguinte ponto de extremidade da API:
POST /api/v2/databases/{database}/schemas/{schema}/mcp-servers/{name}
{
"jsonrpc": "2.0",
"id": 1,
"method": "initialize",
"params": { "protocolVersion": "2025-06-18" }
}
O exemplo a seguir mostra a resposta:
{
"jsonrpc": "2.0", // passthrough from req
"id": 1, // passthrough from req
"result": {
"proto_version": "2025-06-18",
"capabilities": {
"tools": {
"listChanged": false
}
},
"server_info": {
"name": "<snowflake-mcp-name>",
"title": "Snowflake Server: <snowflake-mcp-name>",
"version": "1.0.0"
}
}
}
Descobrir e invocar ferramentas¶
Os clientes MCP podem descobrir e invocar ferramentas com as solicitações tools/list e tools/call.
Para descobrir ferramentas, emita uma chamada POST como mostrado em Solicitação tools/list:
POST /api/v2/databases/{database}/schemas/{schema}/mcp-servers/{name}
{
"jsonrpc": "2.0",
"id": 1,
"method": "tools/list",
"params": {}
}
O exemplo a seguir mostra a resposta:
{
"jsonrpc": "2.0", // passthrough from req
"id": 1, // passthrough from req
"result": {
"tools": [ // search
{
"name":"product-search",
"description":"Test search tool",
"inputSchema": {
"type": "object",
"description": "A search query and additional parameters for search.",
"properties": {
"query": {
"description": "Unstructured text query. Exactly one of 'query' or 'multi_index_query' must be specified.",
"type": "string"
},
"columns": {
"description": "List of columns to return.",
"type": "array",
"items": {
"type": "string"
}
},
"filter": {
"description": "Filter query.",
"type": "object"
},
"limit": {
"description": "Max number of results to return.",
"type": "integer",
"default": 10
}
}
},
"outputSchema": {
"type": "object",
"description": "Search results.",
"properties": {
"results": {
"description": "List of result rows.",
"type": "array",
"items": {
"type": "object",
"additionalProperties": true,
"description": "Map of column names to values (as bytes)."
}
},
"request_id": {
"description": "ID of the request.",
"type": "string"
}
},
"required": ["results", "request_id"]
}
},
{ // analyst
"name":"revenue-semantic-view",
"description":"Test tool",
"inputSchema": {
"type": "object",
"description": "A message and additional parameters for Cortex Analyst.",
"properties": {
"message": {
"description": "The user’s question.",
"type": "string"
}
}
}
}
]
}
}
Para invocar uma ferramenta, emita uma chamada POST como mostrado em Solicitação tools/call.
For the Analyst tool, your client passes messages in the request. The SQL statement is listed in the output. You must pass the name of the tool that you’re invoking in the request in the name parameter.
POST /api/v2/databases/<database>/schemas/<schema>/mcp-servers/<name>
{
"jsonrpc": "2.0",
"id": 1,
"method": "tools/call",
"params": {
"name": "test-analyst",
"arguments": {
"message ": "text"
}
}
}
O exemplo a seguir mostra a resposta:
{
"jsonrpc": "2.0",
"id": 1,
"result": {
"content": [
{
"type": "text",
"text": "string"
}
]
}
}
Para solicitações de ferramentas de pesquisa, seu cliente pode passar a consulta e os seguintes argumentos opcionais:
columns
filter
limit
The search results and request ID are returned in the output. You must pass the name of the tool that you’re invoking in the request as the name parameter.
POST /api/v2/databases/{database}/schemas/{schema}/mcp-servers/{name}
{
"jsonrpc": "2.0",
"id": 1,
"method": "tools/call",
"params": {
"name": "product-search",
"arguments": {
"query": "Hotels in NYC",
"columns": array of strings,
"filter": json,
"limit": int
}
}
}
O exemplo a seguir mostra a resposta:
{
"jsonrpc": "2.0",
"id": 1,
"result": {
"results": {}
}
}
Limitações¶
O servidor MCP gerenciado pelo Snowflake não oferece suporte aos seguintes constructos no protocolo MCP: recursos, prompts, raízes, notificações, negociações de versão, fases do ciclo de vida e amostragem.
Somente respostas sem streaming são compatíveis.