modin.pandas.DataFrame.diff¶
- DataFrame.diff(periods: int = 1, axis: Union[int, Literal['index', 'columns', 'rows']] = 0)[source]¶
First discrete difference of element.
Calculates the difference of a DataFrame element compared with another element in the DataFrame (default is element in previous row).
- Parameters:
periods (int, default 1) – Periods to shift for calculating difference, accepts negative values.
axis ({0 or 'index', 1 or 'columns'}, default 0) – Take difference over rows (0) or columns (1).
- Returns:
DataFrame with the first differences of the Series.
- Return type:
Notes
For boolean dtypes, this uses operator.xor() rather than operator.sub(). The result is calculated according to current dtype in DataFrame, however dtype of the result is always float64.
Examples
>>> df = pd.DataFrame({'a': [1, 2, 3, 4, 5, 6], ... 'b': [1, 1, 2, 3, 5, 8], ... 'c': [1, 4, 9, 16, 25, 36]}) >>> df a b c 0 1 1 1 1 2 1 4 2 3 2 9 3 4 3 16 4 5 5 25 5 6 8 36
Difference with previous row
>>> df.diff() a b c 0 NaN NaN NaN 1 1.0 0.0 3.0 2 1.0 1.0 5.0 3 1.0 1.0 7.0 4 1.0 2.0 9.0 5 1.0 3.0 11.0
Difference with previous column
>>> df.diff(axis=1) a b c 0 None 0 0 1 None -1 3 2 None -1 7 3 None -1 13 4 None 0 20 5 None 2 28
Difference with 3rd previous row
>>> df.diff(periods=3) a b c 0 NaN NaN NaN 1 NaN NaN NaN 2 NaN NaN NaN 3 3.0 2.0 15.0 4 3.0 4.0 21.0 5 3.0 6.0 27.0
Difference with following row
>>> df.diff(periods=-1) a b c 0 -1.0 0.0 -3.0 1 -1.0 -1.0 -5.0 2 -1.0 -1.0 -7.0 3 -1.0 -2.0 -9.0 4 -1.0 -3.0 -11.0 5 NaN NaN NaN