You are viewing documentation about an older version (1.21.0). View latest version

modin.pandas.DataFrame.join

DataFrame.join(other: DataFrame | Series | Iterable[DataFrame | Series], on: IndexLabel | None = None, how: str = 'left', lsuffix: str = '', rsuffix: str = '', sort: bool = False, validate: str | None = None) DataFrame[source]

Join columns of another DataFrame.

Join columns with other DataFrame either on index or on a key column. Efficiently join multiple DataFrame objects by index at once by passing a list.

Parameters:
  • other (DataFrame, Series, or a list containing any combination of them) – Index should be similar to one of the columns in this one. If a Series is passed, its name attribute must be set, and that will be used as the column name in the resulting joined DataFrame.

  • on (str, list of str, or array-like, optional) – Column or index level name(s) in the caller to join on the index in other, otherwise joins index-on-index. If multiple values given, the other DataFrame must have a MultiIndex. Can pass an array as the join key if it is not already contained in the calling DataFrame. Like an Excel VLOOKUP operation.

  • how ({'left', 'right', 'outer', 'inner'}, default 'left') –

    How to handle the operation of the two objects.

    • left: use calling frame’s index (or column if on is specified)

    • right: use other’s index.

    • outer: form union of calling frame’s index (or column if on is specified) with other’s index, and sort it. lexicographically.

    • inner: form intersection of calling frame’s index (or column if on is specified) with other’s index, preserving the order of the calling’s one.

    • cross: creates the cartesian product from both frames, preserves the order of the left keys.

  • lsuffix (str, default '') – Suffix to use from left frame’s overlapping columns.

  • rsuffix (str, default '') – Suffix to use from right frame’s overlapping columns.

  • sort (bool, default False) – Order result DataFrame lexicographically by the join key. If False, the order of the join key depends on the join type (how keyword).

  • validate (str, optional) – If specified, checks if join is of specified type. * “one_to_one” or “1:1”: check if join keys are unique in both left and right datasets. * “one_to_many” or “1:m”: check if join keys are unique in left dataset. * “many_to_one” or “m:1”: check if join keys are unique in right dataset. * “many_to_many” or “m:m”: allowed, but does not result in checks.

Returns:

A dataframe containing columns from both the caller and other.

Return type:

DataFrame

Notes

Parameters on, lsuffix, and rsuffix are not supported when passing a list of DataFrame objects.

Snowpark pandas API doesn’t currently support distributed computation of join with ‘validate’ argument.

Examples

>>> df = pd.DataFrame({'key': ['K0', 'K1', 'K2', 'K3', 'K4', 'K5'],
...                    'A': ['A0', 'A1', 'A2', 'A3', 'A4', 'A5']})
Copy
>>> df
  key   A
0  K0  A0
1  K1  A1
2  K2  A2
3  K3  A3
4  K4  A4
5  K5  A5
Copy
>>> other = pd.DataFrame({'key': ['K0', 'K1', 'K2'],
...                       'B': ['B0', 'B1', 'B2']})
Copy
>>> other
  key   B
0  K0  B0
1  K1  B1
2  K2  B2
Copy

Join DataFrames using their indexes.

>>> df.join(other, lsuffix='_caller', rsuffix='_other')
  key_caller   A key_other     B
0         K0  A0        K0    B0
1         K1  A1        K1    B1
2         K2  A2        K2    B2
3         K3  A3      None  None
4         K4  A4      None  None
5         K5  A5      None  None
Copy

If we want to join using the key columns, we need to set key to be the index in both df and other. The joined DataFrame will have key as its index.

>>> df.set_index('key').join(other.set_index('key'))  
      A     B
key
K0   A0    B0
K1   A1    B1
K2   A2    B2
K3   A3  None
K4   A4  None
K5   A5  None
Copy

Another option to join using the key columns is to use the on parameter. DataFrame.join always uses other’s index but we can use any column in df. This method preserves the original DataFrame’s index in the result.

>>> df.join(other.set_index('key'), on='key')
  key   A     B
0  K0  A0    B0
1  K1  A1    B1
2  K2  A2    B2
3  K3  A3  None
4  K4  A4  None
5  K5  A5  None
Copy

Using non-unique key values shows how they are matched.

>>> df = pd.DataFrame({'key': ['K0', 'K1', 'K1', 'K3', 'K0', 'K1'],
...                    'A': ['A0', 'A1', 'A2', 'A3', 'A4', 'A5']})
Copy
>>> df
  key   A
0  K0  A0
1  K1  A1
2  K1  A2
3  K3  A3
4  K0  A4
5  K1  A5
Copy

TODO: SNOW-890653 Enable this test

>>> df.join(other.set_index('key'), on='key', validate='m:1')  
  key   A    B
0  K0  A0   B0
1  K1  A1   B1
2  K1  A2   B1
3  K3  A3  NaN
4  K0  A4   B0
5  K1  A5   B1
Copy