Categories:

Model monitor functions

MODEL_MONITOR_PERFORMANCE_METRIC

Gets performance metrics from a model monitor. Each model monitor monitors one machine learning model.

See also:

Querying monitoring results for more information.

Syntax

MODEL_MONITOR_PERFORMANCE_METRIC(<model_monitor_name>, <performance_metric_name>,
    [, <granularity> [, <start_time>  [, <end_time> ] ] ] )
Copy

Arguments

Required:

MODEL_MONITOR_NAME

Name of the model monitor used to compute the metric.

Valid values:

A string that’s the name of the model monitor. It can be a simple or fully qualified name.

METRIC_NAME

Name of the performance metric.

Valid values if the model monitor is attached to a regression model:

  • 'RMSE'

  • 'MAE'

  • 'MAPE'

Valid values if the model monitor is attached to a binary classification model:

  • 'ROC_AUC'

  • 'CLASSIFICATION_ACCURACY'

  • 'PRECISION'

  • 'RECALL'

  • 'F1_SCORE'

Optional:

GRANULARITY

Granularity of the time range being queried.

Valid values:

  • '<num> DAY'

  • '<num> WEEK'

  • '<num> MONTH'

  • '<num> QUARTER'

  • '<num> YEAR'

  • 'ALL'

  • NULL

START_TIME

Start of the time range used to compute the metric.

Valid values:

A constant timestream expression or NULL.

END_TIME

End of the time range used to compute the metric.

Valid values:

A constant timestream expression or NULL.

Returns

Column

Description

Example values

EVENT_TIMESTAMP

Timestamp at the start of the time range.

2024-01-01 00:00:00.000

METRIC_VALUE

Value of the metric within the specified time range.

0.5

COUNT_USED

Number of records used to compute the metric.

100

COUNT_UNUSED

Number of records excluded from the metric computation.

10

METRIC_NAME

Name of the metric that has been computed.

ROC_AUC

Usage Notes

Requirements

  • The model monitor must be associated with a model that supports the requested metric type.

  • The model monitor must contain the necessary data for each metric type.

  • Ensure the model monitor meets the metric requirements.

    • Regression

      • RMSE: Requires prediction_score and actual_score columns

      • MAE: Requires prediction_score and actual_score columns

      • MAPE: Requires prediction_score and actual_score columns

    • Binary Classification

      • ROC_AUC: Requires prediction_score and actual_class columns

      • CLASSIFICATION_ACCURACY: Requires prediction_class and actual_class columns

      • PRECISION: Requires prediction_class and actual_class columns

      • RECALL: Requires prediction_class and actual_class columns

      • F1_SCORE: Requires prediction_class and actual_class columns

Error cases

You might run into errors if you do the following:

  • Request an accuracy metric without setting the corresponding prediction or actual column.

  • There is no data for the actual_score or actual_class columns.

Examples

The following example gets the Root Mean Square Error (RMSE) over a one-day period from the model monitor.

SELECT * FROM TABLE(MODEL_MONITOR_PERFORMANCE_METRIC(
'MY_MONITOR', 'RMSE', '1 DAY', TO_TIMESTAMP_TZ(‘2024-01-01’)
, TO_TIMESTAMP_TZ(‘2024-01-02’))
)
Copy