- Categories:
MODEL_MONITOR_PERFORMANCE_METRIC¶
Gets performance metrics from a model monitor. Each model monitor monitors one machine learning model.
- See also:
Querying monitoring results for more information.
Syntax¶
MODEL_MONITOR_PERFORMANCE_METRIC(<model_monitor_name>, <performance_metric_name>,
[, <granularity> [, <start_time> [, <end_time> ] ] ] )
Arguments¶
Required:
MODEL_MONITOR_NAME
Name of the model monitor used to compute the metric.
Valid values:
A string that’s the name of the model monitor. It can be a simple or fully qualified name.
METRIC_NAME
Name of the performance metric.
Valid values if the model monitor is attached to a regression model:
'RMSE'
'MAE'
'MAPE'
Valid values if the model monitor is attached to a binary classification model:
'ROC_AUC'
'CLASSIFICATION_ACCURACY'
'PRECISION'
'RECALL'
'F1_SCORE'
Optional:
GRANULARITY
Granularity of the time range being queried.
Valid values:
'<num> DAY'
'<num> WEEK'
'<num> MONTH'
'<num> QUARTER'
'<num> YEAR'
'ALL'
NULL
START_TIME
Start of the time range used to compute the metric.
Valid values:
A constant timestream expression or
NULL
.END_TIME
End of the time range used to compute the metric.
Valid values:
A constant timestream expression or
NULL
.
Returns¶
Column |
Description |
Example values |
---|---|---|
|
Timestamp at the start of the time range. |
|
|
Value of the metric within the specified time range. |
|
|
Number of records used to compute the metric. |
|
|
Number of records excluded from the metric computation. |
|
|
Name of the metric that has been computed. |
|
Usage Notes¶
Requirements¶
The model monitor must be associated with a model that supports the requested metric type.
The model monitor must contain the necessary data for each metric type.
Ensure the model monitor meets the metric requirements.
Regression
RMSE: Requires prediction_score and actual_score columns
MAE: Requires prediction_score and actual_score columns
MAPE: Requires prediction_score and actual_score columns
Binary Classification
ROC_AUC: Requires prediction_score and actual_class columns
CLASSIFICATION_ACCURACY: Requires prediction_class and actual_class columns
PRECISION: Requires prediction_class and actual_class columns
RECALL: Requires prediction_class and actual_class columns
F1_SCORE: Requires prediction_class and actual_class columns
Error cases¶
You might run into errors if you do the following:
Request an accuracy metric without setting the corresponding prediction or actual column.
There is no data for the
actual_score
oractual_class
columns.
Examples¶
The following example gets the Root Mean Square Error (RMSE) over a one-day period from the model monitor.
SELECT * FROM TABLE(MODEL_MONITOR_PERFORMANCE_METRIC(
'MY_MONITOR', 'RMSE', '1 DAY', TO_TIMESTAMP_TZ(‘2024-01-01’)
, TO_TIMESTAMP_TZ(‘2024-01-02’))
)