Using the Snowpark Python DB-API

Com o Snowpark Python DB-API, os usuários do Snowpark Python podem extrair dados programaticamente de bancos de dados externos para o Snowflake. Isso inclui:

  • Python DB-API support: Connect to external databases using Python’s standard DB-API 2.0 drivers.

  • Configuração simplificada: use pip para instalar os drivers necessários, sem necessidade de gerenciar dependências adicionais.

Com essas APIs, você pode extrair dados perfeitamente para tabelas do Snowflake e transformá-los usando Snowpark DataFrames para análise avançada.

The DB-API can be used in a similar way as the Spark JDBC API. Most parameters are designed to be identical or similar for better parity. At the same time, Snowpark emphasizes a Python-first design with intuitive naming conventions that avoid JDBC-specific configurations. This provides Python developers with a familiar experience. For more information that compares the Snowpark Python DB-API with the Spark JDBC API, see the following table:

Parâmetros de DB-API

Parâmetro

Snowpark Python DB-API

create_connection

Função para criar uma conexão do Python DB-API.

table

Especifica a tabela no banco de dados de origem.

query

Consulta SQL agrupada como uma subconsulta para leitura de dados.

column

Coluna de particionamento para leituras paralelas.

lower_bound

Limite inferior para particionamento.

upper_bound

Limite superior para particionamento.

num_partitions

Número de partições para paralelismo.

query_timeout

Tempo limite para execução de SQL (em segundos).

fetch_size

Número de linhas buscadas por ida e volta.

custom_schema

Esquema personalizado para extrair dados de bancos de dados externos.

max_workers

Número de trabalhadores para busca paralela e extração de dados de bancos de dados externos.

predicates

Lista de condições para partições de cláusula WHERE.

session_init_statement

Executa uma instrução SQL ou PL/SQL na inicialização da sessão.

udtf_configs

Executes the workload using a Snowflake UDTF for better performance.

fetch_merge_count

Number of fetched batches to be merged into a single Parquet file before it is uploaded.

Compreensão de paralelismo

Snowpark Python DB-API has two forms of ingestion mechanism underlying.

Ingestão local

Na ingestão local, o Snowpark primeiro busca os dados de fontes externas ao seu ambiente local, em que função dbapi() é chamada e os converte em arquivos Parquet. Em seguida, o Snowpark carrega os arquivos Parquet em uma área de preparação temporária do Snowflake e os copia da área de preparação para uma tabela temporária.

Ingestão UDTF

Na ingestão UDTF, todas as cargas de trabalho são executadas no servidor Snowflake. O Snowpark primeiro cria uma UDTF e a executa, e a UDTF ingere os dados diretamente no Snowflake e os armazena em uma tabela temporária.

Snowpark Python DB-API also has two ways to parallelize and accelerate ingestion.

Coluna de partição

Este método divide os dados de origem em uma série de partições com base em quatro parâmetros, quando os usuários chamam dbapi():

  • column

  • lower_bound

  • upper_bound

  • num_partitions

Esses quatro parâmetros precisam ser definidos ao mesmo tempo, e column deve ser um tipo de data ou numérico.

Predicates

Este método divide os dados de origem em partições baseadas em predicados de parâmetros, que são uma lista de expressões adequadas para inclusão em cláusulas WHERE, em que cada expressão define uma partição. Os predicados oferecem um meio mais flexível de dividir as partições; por exemplo, você pode dividi-las em colunas boolianas ou não numéricas.

A Snowpark Python DB-API também permite ajustar o nível de paralelismo em uma partição.

Fetch_size

Within a partition, the API fetches rows in chunks defined by fetch_size. These rows are written to Snowflake in parallel as they are fetched, allowing reading and writing to overlap and maximize throughput.

Ao combinar os métodos de ingestão e paralelismo acima, o Snowflake oferece quatro formas de ingestão:

  • Ingestão local com coluna de partição

    df_local_par_column = session.read.dbapi(
        create_connection,
        table="target_table",
        fetch_size=100000,
        num_partitions=4,
        column="ID",  # Swap with the column you want your partition based on
        upper_bound=10000,
        lower_bound=0
    )
    
    Copy
  • Ingestão local com predicados

    df_local_predicates = session.read.dbapi(
        create_connection,
        table="target_table",
        fetch_size=100000,
        predicates=[
            "ID < 3",
            "ID >= 3"
        ]
    )
    
    Copy
  • Ingestão UDTF com coluna de partição

    udtf_configs = {
        "external_access_integration": "<your external access integration>"
    }
    df_udtf_par_column = session.read.dbapi(
        create_connection,
        table="target_table",
        udtf_configs=udtf_configs,
        fetch_size=100000,
        num_partitions=4,
        column="ID",  # Swap with the column you want your partition based on
        upper_bound=10000,
        lower_bound=0
    )
    
    Copy
  • Ingestão UDTF com predicados

    udtf_configs = {
        "external_access_integration": "<your external access integration>"
    }
    
    df_udtf_predicates = session.read.dbapi(
        create_dbx_connection,
        table="target_table",
        udtf_configs=udtf_configs,
        fetch_size=100000,
        predicates=[
            "ID < 3",
            "ID >= 3"
        ]
    )
    
    Copy

SQL server

To connect to SQL Server from Snowpark, you need the following three packages:

The following code examples show how to connect to SQL Server from a Snowpark client and a stored procedure.

Use the DB-API to connect to SQL Server from a Snowpark client

  1. Install the Python SQL Driver:

    /bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install.sh)"
    brew tap microsoft/mssql-release https://github.com/Microsoft/homebrew-mssql-release
    brew update
    HOMEBREW_ACCEPT_EULA=Y brew install msodbcsql18 mssql-tools18
    
    Copy
  2. Install snowflake-snowpark-python[pandas] and pyodbc:

    pip install snowflake-snowpark-python[pandas]
    pip install pyodbc
    
    Copy
  3. Define the factory method for creating a connection to SQL Server:

    def create_sql_server_connection():
        import pyodbc
        SERVER = "<your host name>"
        PORT = <your port>
        UID = "<your user name>"
        PWD = "<your password>"
        DATABASE = "<your database name>"
        connection_str = (
            f"DRIVER={{ODBC Driver 18 for SQL Server}};"
            f"SERVER={SERVER}:{PORT};"
            f"UID={UID};"
            f"PWD={PWD};"
            f"DATABASE={DATABASE};"
            "TrustServerCertificate=yes"
            "Encrypt=yes"
            # Optional to identify source of queries
            "APP=snowflake-snowpark-python;"
        )
        connection = pyodbc.connect(connection_str)
        return connection
    
    # Feel free to combine local/udtf ingestion and partition column/predicates as
    # stated in the understanding parallelism section
    
    # Call dbapi to pull data from target table
    
    df = session.read.dbapi(
        create_sql_server_connection,
        table="target_table"
    )
    
    # Call dbapi to pull data from target query
    
    df_query = session.read.dbapi(
        create_sql_server_connection,
        query="select * from target_table"
    )
    
    # Pull data from target table with parallelism using partition column
    
    df_local_par_column = session.read.dbapi(
        create_sql_server_connection,
        table="target_table",
        fetch_size=100000,
        num_partitions=4,
        column="ID",  # Swap with the column you want your partition based on
        upper_bound=10000,
        lower_bound=0
    )
    
    udtf_configs = {
        "external_access_integration": "<your external access integration>"
    }
    
    # Pull data from target table with udtf ingestion with parallelism using predicates
    
    df_udtf_predicates = session.read.dbapi(
        create_sql_server_connection,
        table="target_table",
        udtf_configs=udtf_configs,
        fetch_size=100000,
        predicates=[
            "ID < 3",
            "ID >= 3"
        ]
    )
    
    Copy

Uso de DB-API para conectar-se ao SQL Server de um procedimento armazenado

  1. Configure an external access integration (EAI), which is required to allow Snowflake to connect to the source endpoint.

    Nota

    PrivateLink is recommended for secure data transfer, especially when you’re dealing with sensitive information. Ensure that your Snowflake account has the necessary PrivateLink privileges enabled and that the PrivateLink feature is configured and active in your Snowflake Notebook environment.

  2. Configure the secret, a network rule to allow egress to the source endpoint, and EAI:

    -- Configure a secret to allow egress to the source endpoint
    
    CREATE OR REPLACE SECRET mssql_secret
    TYPE = PASSWORD
    USERNAME = 'mssql_username'
    PASSWORD = 'mssql_password';
    
    -- Configure a network rule to allow egress to the source endpoint
    
    CREATE OR REPLACE NETWORK RULE mssql_network_rule
    MODE = EGRESS
    TYPE = HOST_PORT
    VALUE_LIST = ('mssql_host:mssql_port');
    
    -- Configure an external access integration
    
    CREATE OR REPLACE EXTERNAL ACCESS INTEGRATION mssql_access_integration
    ALLOWED_NETWORK_RULES = (mssql_network_rule)
    ALLOWED_AUTHENTICATION_SECRETS = (mssql_secret)
    ENABLED = true;
    
    Copy
  3. Use the DB-API to pull data from SQL Server in a Python stored procedure:

    CREATE OR REPLACE PROCEDURE sp_mssql_dbapi()
        RETURNS TABLE()
        LANGUAGE PYTHON
        RUNTIME_VERSION='3.11'
        HANDLER='run'
        PACKAGES=('snowflake-snowpark-python', 'pyodbc', 'msodbcsql')
        EXTERNAL_ACCESS_INTEGRATIONS = (mssql_access_integration)
        SECRETS = ('cred' = mssql_secret )
    AS $$
    
    # Get user name and password from mssql_secret
    
    import _snowflake
    username_password_object = _snowflake.get_username_password('cred')
    USER = username_password_object.username
    PASSWORD = username_password_object.password
    
    # Define a method to connect to SQL server_hostname
    from snowflake.snowpark import Session
    def create_sql_server_connection():
        import pyodbc
    
        host = "<your host>"
        port = <your port>
        username = USER
        password = PASSWORD
        database = "<your database name>"
        connection_str = (
            f"DRIVER={{ODBC Driver 18 for SQL Server}};"
            f"SERVER={host},{port};"
            f"DATABASE={database};"
            f"UID={username};"
            f"PWD={password};"
            "TrustServerCertificate=yes"
            "Encrypt=yes"
            # Optional to identify source of queries
            "APP=snowflake-snowpark-python;"
        )
    
        connection = pyodbc.connect(connection_str)
        return connection
    
    def run(session: Session):
        # Feel free to combine local/udtf ingestion and partition column/predicates
        # as stated in the understanding parallelism section
    
        # Call dbapi to pull data from target table
    
        df = session.read.dbapi(
            create_sql_server_connection,
            table="target_table"
        )
    
        # Call dbapi to pull data from target query
    
        df_query = session.read.dbapi(
            create_sql_server_connection,
            query="select * from target_table"
        )
    
        # Pull data from target table with parallelism using partition column
    
        df_local_par_column = session.read.dbapi(
            create_sql_server_connection,
            table="target_table",
            fetch_size=100000,
            num_partitions=4,
            column="ID",  # swap with the column you want your partition based on
            upper_bound=10000,
            lower_bound=0
        )
    
        udtf_configs = {
            "external_access_integration": "<your external access integration>"
        }
    
        # Pull data from target table with udtf ingestion with parallelism using predicates
    
        df_udtf_predicates = session.read.dbapi(
            create_sql_server_connection,
            table="target_table",
            udtf_configs=udtf_configs,
            fetch_size=100000,
            predicates=[
                "ID < 3",
                "ID >= 3"
            ]
        )
    
        return df
    $$;
    
    CALL sp_mssql_dbapi();
    
    Copy

Using DB-API to connect to SQL server from a Snowflake notebook

  1. From Snowflake Notebook packages, select snowflake-snowpark-python and pyodbc.

  2. Na guia de arquivos ao lado esquerdo, abra o arquivo environment.yml e adicione a seguinte linha de código após as outras entradas abaixo das dependências:

    - msodbcsql18
    
    Copy
  3. Configure the secret, a network rule to allow egress to the source endpoint, and external access integration:

    -- Configure a secret to allow egress to the source endpoint
    
    CREATE OR REPLACE SECRET mssql_secret
    TYPE = PASSWORD
    USERNAME = 'mssql_username'
    PASSWORD = 'mssql_password';
    
    ALTER NOTEBOOK mynotebook SET SECRETS = ('snowflake-secret-object' = mssql_secret);
    
    -- Configure a network rule to allow egress to the source endpoint
    
    CREATE OR REPLACE NETWORK RULE mssql_network_rule
    MODE = EGRESS
    TYPE = HOST_PORT
    VALUE_LIST = ('mssql_host:mssql_port');
    
    -- Configure an external access integration
    
    CREATE OR REPLACE EXTERNAL ACCESS INTEGRATION mssql_access_integration
    ALLOWED_NETWORK_RULES = (mssql_network_rule)
    ALLOWED_AUTHENTICATION_SECRETS = (mssql_secret)
    ENABLED = true;
    
    Copy
  4. Configurar acesso externo para o Snowflake Notebooks, and then restart the notebook session.

  5. Use the DB-API to pull data from SQL Server in a Python cell of a Snowflake notebook:

    # Get user name and password from mssql_secret
    
    import _snowflake
    username_password_object = _snowflake.get_username_password('snowflake-secret-object')
    USER = username_password_object.username
    PASSWORD = username_password_object.password
    
    import snowflake.snowpark.context
    session = snowflake.snowpark.context.get_active_session()
    
    def create_sql_server_connection():
        import pyodbc
        SERVER = SQL_SERVER_CONNECTION_PARAMETERS["SERVER"]
        UID = SQL_SERVER_CONNECTION_PARAMETERS["UID"]
        PWD = SQL_SERVER_CONNECTION_PARAMETERS["PWD"]
        DATABASE = "test_query_history"
        connection_str = (
            f"DRIVER={{ODBC Driver 18 for SQL Server}};"
            f"SERVER={SERVER};"
            f"UID={UID};"
            f"PWD={PWD};"
            f"DATABASE={DATABASE};"
            "TrustServerCertificate=yes;"
            "Encrypt=yes;"
            # Optional to identify source of queries
            "APP=snowflake-snowpark-python;"
        )
        connection = pyodbc.connect(connection_str)
        return connection
    
    # Feel free to combine local/udtf ingestion and partition column/predicates as
    # stated in the understanding parallelism section
    
    # Call dbapi to pull data from target table
    
    df = session.read.dbapi(
        create_sql_server_connection,
        table="target_table"
    )
    
    # Call dbapi to pull data from target query
    
    df_query = session.read.dbapi(
        create_sql_server_connection,
        query="select * from target_table"
    )
    
    # Pull data from target table with parallelism using partition column
    
    df_local_par_column = session.read.dbapi(
        create_sql_server_connection,
        table="target_table",
        fetch_size=100000,
        num_partitions=4,
        column="ID",  # swap with the column you want your partition based on
        upper_bound=10000,
        lower_bound=0
    )
    
    udtf_configs = {
        "external_access_integration": "<your external access integration>"
    }
    
    # Pull data from target table with udtf ingestion with parallelism using predicates
    
    df_udtf_predicates = session.read.dbapi(
        create_sql_server_connection,
        table="target_table",
        udtf_configs=udtf_configs,
        fetch_size=100000,
        predicates=[
            "ID < 3",
            "ID >= 3"
        ]
    )
    
    # Save data into sf_table
    df.write.mode("overwrite").save_as_table('sf_table')
    
    Copy

Source tracing when using DB-API to connect to SQL server

  1. Inclua uma tag do Snowpark na função de criação da conexão:

    def create_sql_server_connection():
        import pyodbc
        SERVER = "<your host name>"
        PORT = <your port>
        UID = "<your user name>"
        PWD = "<your password>"
        DATABASE = "<your database name>"
        connection_str = (
            f"DRIVER={{ODBC Driver 18 for SQL Server}};"
            f"SERVER={SERVER}:{PORT};"
            f"UID={UID};"
            f"PWD={PWD};"
            f"DATABASE={DATABASE};"
            "TrustServerCertificate=yes"
            "Encrypt=yes"
            # include this parameter for source tracing
            "APP=snowflake-snowpark-python;"
        )
        connection = pyodbc.connect(connection_str)
        return connection
    
    Copy
  2. Execute o seguinte SQL na fonte de dados para capturar consultas do Snowpark que ainda estão ativas:

    SELECT
        s.session_id,
        s.program_name,
        r.status,
        t.text AS sql_text
    FROM sys.dm_exec_sessions s
    JOIN sys.dm_exec_requests r ON s.session_id = r.session_id
    CROSS APPLY sys.dm_exec_sql_text(r.sql_handle) AS t
    WHERE s.program_name = 'snowflake-snowpark-python';
    
    Copy

Oracle

To connect to Oracle from Snowpark, you need the following two packages:

The following code examples show how to connect to Oracle from a Snowpark client, stored procedures, and a Snowflake notebook.

Use the DB-API to connect to Oracle from a Snowpark client

  1. Install snowflake-snowpark-python[pandas] and oracledb:

    pip install snowflake-snowpark-python[pandas]
    pip install oracledb
    
    Copy
  2. Use the DB-API to pull data from Oracle and define the factory method for creating a connection to Oracle:

    def create_oracle_db_connection():
        import oracledb
        HOST = "<your host>"
        PORT = <your port>
        SERVICE_NAME = "<your service name>"
        USER = "<your user name>"
        PASSWORD = "your password"
        DSN = f"{HOST}:{PORT}/{SERVICE_NAME}"
        connection = oracledb.connect(
            user=USER,
            password=PASSWORD,
            dsn=DSN
        )
        # Optional: include this parameter for source tracing
        connection.clientinfo = "snowflake-snowpark-python"
        return connection
    
    # Feel free to combine local/udtf ingestion and partition column/predicates as
    # stated in the understanding parallelism section
    
    # Call dbapi to pull data from target table
    
    df = session.read.dbapi(
        create_oracle_db_connection,
        table="target_table"
    )
    
    # Call dbapi to pull data from target query
    
    df_query = session.read.dbapi(
        create_oracle_db_connection,
        query="select * from target_table"
    )
    
    # Pull data from target table with parallelism using partition column
    
    df_local_par_column = session.read.dbapi(
        create_oracle_db_connection,
        table="target_table",
        fetch_size=100000,
        num_partitions=4,
        column="ID",  # swap with the column you want your partition based on
        upper_bound=10000,
        lower_bound=0
    )
    
    udtf_configs = {
        "external_access_integration": "<your external access integration>"
    }
    
    # Pull data from target table with udtf ingestion with parallelism using predicates
    
    df_udtf_predicates = session.read.dbapi(
        create_oracle_db_connection,
        table="target_table",
        udtf_configs=udtf_configs,
        fetch_size=100000,
        predicates=[
            "ID < 3",
            "ID >= 3"
        ]
    )
    
    Copy

Uso de DB-API para conectar-se ao Oracle a partir de um procedimento armazenado

  1. Configure an external access integration (EAI), which is required to allow Snowflake to connect to the source endpoint.

    Nota

    PrivateLink is recommended for secure data transfer, especially when you’re dealing with sensitive information. Ensure that your Snowflake account has the necessary PrivateLink privileges enabled and that the PrivateLink feature is configured and active in your Snowflake Notebook environment.

  2. Configure the secret, a network rule to allow egress to the source endpoint, and EAI:

    -- Configure the secret, a network rule to allow egress to the source endpoint, and EAI:
    
    CREATE OR REPLACE SECRET ora_secret
    TYPE = PASSWORD
    USERNAME = 'ora_username'
    PASSWORD = 'ora_password';
    
    -- configure a network rule to allow egress to the source endpoint
    
    CREATE OR REPLACE NETWORK RULE ora_network_rule
    MODE = EGRESS
    TYPE = HOST_PORT
    VALUE_LIST = ('ora_host:ora_port');
    
    -- configure an external access integration
    
    CREATE OR REPLACE EXTERNAL ACCESS INTEGRATION ora_access_integration
    ALLOWED_NETWORK_RULES = (ora_network_rule)
    ALLOWED_AUTHENTICATION_SECRETS = (ora_secret)
    ENABLED = true;
    
    Copy
  3. Use Snowpark Python DB-API to pull data from Oracle in a Python stored procedure:

    CREATE OR REPLACE PROCEDURE sp_ora_dbapi()
        RETURNS TABLE()
        LANGUAGE PYTHON
        RUNTIME_VERSION='3.11'
        HANDLER='run'
        PACKAGES=('snowflake-snowpark-python', 'oracledb')
        EXTERNAL_ACCESS_INTEGRATIONS = (ora_access_integration)
        SECRETS = ('cred' = ora_secret )
    AS $$
    
    # Get user name and password from ora_secret
    import _snowflake
    username_password_object = _snowflake.get_username_password('cred')
    USER = username_password_object.username
    PASSWORD = username_password_object.password
    
    # Define the factory method for creating a connection to Oracle
    
    from snowflake.snowpark import Session
    
    def create_oracle_db_connection():
        import oracledb
        host = "ora_host"
        port = "ora_port"
        service_name = "ora_service"
        user = USER
        password = PASSWORD
        DSN = f"{host}:{port}/{service_name}"
        connection = oracledb.connect(
            user=USER,
            password=PASSWORD,
            dsn=DSN
        )
        # Optional: include this parameter for source tracing
        connection.clientinfo = "snowflake-snowpark-python"
        return connection
    
    def run(session: Session):
        # Feel free to combine local/udtf ingestion and partition column/predicates
        # as stated in the understanding parallelism section
    
        # Call dbapi to pull data from target table
    
        df = session.read.dbapi(
            create_oracle_db_connection,
            table="target_table"
        )
    
        # Call dbapi to pull data from target query
    
        df_query = session.read.dbapi(
            create_oracle_db_connection,
            query="select * from target_table"
        )
    
        # Pull data from target table with parallelism using partition column
    
        df_local_par_column = session.read.dbapi(
            create_oracle_db_connection,
            table="target_table",
            fetch_size=100000,
            num_partitions=4,
            column="ID",  # swap with the column you want your partition based on
            upper_bound=10000,
            lower_bound=0
        )
    
        udtf_configs = {
            "external_access_integration": "<your external access integration>"
        }
    
        # Pull data from target table with udtf ingestion with parallelism using predicates
    
        df_udtf_predicates = session.read.dbapi(
            create_oracle_db_connection,
            table="target_table",
            udtf_configs=udtf_configs,
            fetch_size=100000,
            predicates=[
                "ID < 3",
                "ID >= 3"
            ]
        )
        return df
    $$;
    
    CALL sp_ora_dbapi();
    
    Copy

Using DB-API to connect to Oracle from a Snowflake notebook

  1. From Snowflake Notebook packages, select snowflake-snowpark-python and oracledb.

  2. Configure an external access integration (EAI), which is required to allow Snowflake to connect to the source endpoint.

    Nota

    PrivateLink is recommended for secure data transfer, especially when you’re dealing with sensitive information. Ensure that your Snowflake account has the necessary PrivateLink privileges enabled and that the PrivateLink feature is configured and active in your Snowflake Notebook environment.

  3. Configure the secret, a network rule, and EAI to allow egress to the source endpoint:

    -- Configure the secret, a network rule to allow egress to the source endpoint, and EAI:
    CREATE OR REPLACE SECRET mysql_secret
        TYPE = PASSWORD
        USERNAME = 'mysql_username'
        PASSWORD = 'mysql_password';
    ALTER NOTEBOOK mynotebook SET SECRETS = ('snowflake-secret-object' = mysql_secret);
    
    -- configure a network rule to allow egress to the source endpoint
    
    CREATE OR REPLACE NETWORK RULE mysql_network_rule
        MODE = EGRESS
        TYPE = HOST_PORT
        VALUE_LIST = ('mysql_host:mysql_port');
    
    -- configure an external access integration
    
    CREATE OR REPLACE EXTERNAL ACCESS INTEGRATION mysql_access_integration
        ALLOWED_NETWORK_RULES = (mysql_network_rule)
        ALLOWED_AUTHENTICATION_SECRETS = (mysql_secret)
        ENABLED = true;
    
    Copy
  4. Configurar acesso externo para o Snowflake Notebooks, and then restart the notebook session.

  5. Use the DB-API to pull data from Oracle in a Python cell of a Snowflake notebook:

    # Get user name and password from ora_secret
    
    import _snowflake
    username_password_object = _snowflake.get_username_password('snowflake-secret-object')
    USER = username_password_object.username
    PASSWORD = username_password_object.password
    
    import snowflake.snowpark.context
    session = snowflake.snowpark.context.get_active_session()
    
    # Define the factory method for creating a connection to Oracle
    
    def create_oracle_db_connection():
        import oracledb
        host = "ora_host"
        port = "ora_port"
        service_name = "ora_service"
        user = USER
        password = PASSWORD
        DSN = f"{host}:{port}/{service_name}"
        connection = oracledb.connect(
            user=USER,
            password=PASSWORD,
            dsn=DSN,
        )
        # Optional: include this parameter for source tracing
        connection.clientinfo = "snowflake-snowpark-python"
        return connection
    
    # Feel free to combine local/udtf ingestion and partition column/predicates as
    # stated in the understanding parallelism section
    
    # Call dbapi to pull data from target table
    
    df = session.read.dbapi(
        create_oracle_db_connection,
        table="target_table"
    )
    
    # Call dbapi to pull data from target query
    
    df_query = session.read.dbapi(
        create_oracle_db_connection,
        query="select * from target_table"
    )
    
    # Pull data from target table with parallelism using partition column
    
    df_local_par_column = session.read.dbapi(
        create_oracle_db_connection,
        table="target_table",
        fetch_size=100000,
        num_partitions=4,
        column="ID",  # swap with the column you want your partition based on
        upper_bound=10000,
        lower_bound=0
    )
    
    udtf_configs = {
        "external_access_integration": "<your external access integration>"
    }
    
    # Pull data from target table with udtf ingestion with parallelism using predicates
    
    df_udtf_predicates = session.read.dbapi(
        create_oracle_db_connection,
        table="target_table",
        udtf_configs=udtf_configs,
        fetch_size=100000,
        predicates=[
            "ID < 3",
            "ID >= 3"
        ]
    )
    
    # Save data into sf_table
    
    df_ora.write.mode("overwrite").save_as_table('sf_table')
    
    Copy

Source tracing when using DB-API to connect to Oracle

  1. Inclua uma tag do Snowpark na função de criação da conexão.

    def create_oracle_db_connection():
        import oracledb
        HOST = "myhost"
        PORT = "myport"
        SERVICE_NAME = "myservice"
        USER = "myuser"
        PASSWORD = "mypassword"
        DSN = f"{HOST}:{PORT}/{SERVICE_NAME}"
        connection = oracledb.connect(
            user=USER,
            password=PASSWORD,
            dsn=DSN,
        )
        # include this parameter for source tracing
        connection.clientinfo = "snowflake-snowpark-python"
        return connection
    
    Copy
  2. Execute o seguinte SQL na fonte de dados para capturar consultas do Snowpark que ainda estão ativas:

    SELECT
        s.sid,
        s.serial#,
        s.username,
        s.module,
        q.sql_id,
        q.sql_text,
        q.last_active_time
    FROM
        v$session s
        JOIN v$sql q ON s.sql_id = q.sql_id
    WHERE
        s.client_info = 'snowflake-snowpark-python'
    
    Copy

PostgreSQL

To connect to PostgreSQL from Snowpark, you need the following two packages:

The following code examples show how to connect to PostgreSQL from a Snowpark client, stored procedures, and a Snowflake notebook.

Use the DB-API to connect to PostgreSQL from a Snowpark client

  1. Install psycopg2:

    pip install psycopg2
    
    Copy
  2. Define the factory method for creating a connection to PostgreSQL:

    def create_pg_connection():
        import psycopg2
        connection = psycopg2.connect(
            host="pg_host",
            port=pg_port,
            dbname="pg_dbname",
            user="pg_user",
            password="pg_password",
            # Optional: include this parameter for source tracing
            application_name="snowflake-snowpark-python"
        )
        return connection
    
    # Feel free to combine local/udtf ingestion and partition column/predicates as
    # stated in the understanding parallelism section
    
    # Call dbapi to pull data from target table
    
    df = session.read.dbapi(
        create_pg_connection,
        table="target_table"
    )
    
    # Call dbapi to pull data from target query
    
    df_query = session.read.dbapi(
        create_pg_connection,
        query="select * from target_table"
    )
    
    # Pull data from target table with parallelism using partition column
    
    df_local_par_column = session.read.dbapi(
        create_pg_connection,
        table="target_table",
        fetch_size=100000,
        num_partitions=4,
        column="ID",  # Swap with the column you want your partition based on
        upper_bound=10000,
        lower_bound=0
    )
    
    udtf_configs = {
        "external_access_integration": "<your external access integration>"
    }
    
    # Pull data from target table with udtf ingestion with parallelism using predicates
    
    df_udtf_predicates = session.read.dbapi(
        create_pg_connection,
        table="target_table",
        udtf_configs=udtf_configs,
        fetch_size=100000,
        predicates=[
            "ID < 3",
            "ID >= 3"
        ]
    )
    
    Copy

Uso de DB-API para conectar-se a PostgreSQL de um procedimento armazenado

  1. Configure an external access integration (EAI), which is required to allow Snowflake to connect to the source endpoint.

    Nota

    PrivateLink is recommended for secure data transfer, especially when you’re dealing with sensitive information. Ensure that your Snowflake account has the necessary PrivateLink privileges enabled and that the PrivateLink feature is configured and active in your Snowflake Notebook environment.

  2. Configure the secret, a network rule to allow egress to the source endpoint, and EAI:

    -- configure a secret
    
    CREATE OR REPLACE SECRET pg_secret
        TYPE = PASSWORD
        USERNAME = 'pg_username'
        PASSWORD = 'pg_password';
    
    -- configure a network rule.
    
    CREATE OR REPLACE NETWORK RULE pg_network_rule
        MODE = EGRESS
        TYPE = HOST_PORT
        VALUE_LIST = ('pg_host:pg_port');
    
    -- configure an external access integration.
    
    CREATE OR REPLACE EXTERNAL ACCESS INTEGRATION pg_access_integration
        ALLOWED_NETWORK_RULES = (pg_network_rule)
        ALLOWED_AUTHENTICATION_SECRETS = (pg_secret)
        ENABLED = true;
    
    Copy
  3. Use Snowpark Python DB-API to pull data from PostgreSQL in a Python stored procedure:

    CREATE OR REPLACE PROCEDURE sp_pg_dbapi()
        RETURNS TABLE()
        LANGUAGE PYTHON
        RUNTIME_VERSION='3.11'
        HANDLER='run'
        PACKAGES=('snowflake-snowpark-python', 'psycopg2')
        EXTERNAL_ACCESS_INTEGRATIONS = (pg_access_integration)
        SECRETS = ('cred' = pg_secret )
    AS $$
    
    # Get user name and password from pg_secret
    
    import _snowflake
    username_password_object = _snowflake.get_username_password('cred')
    USER = username_password_object.username
    PASSWORD = username_password_object.password
    
    # Define the factory method for creating a connection to PostgreSQL
    
    from snowflake.snowpark import Session
    
    def create_pg_connection():
        import psycopg2
        connection = psycopg2.connect(
            host="pg_host",
            port=pg_port,
            dbname="pg_dbname",
            user=USER,
            password=PASSWORD,
            # Optional: include this parameter for source tracing
            application_name="snowflake-snowpark-python"
        )
        return connection
    
    def run(session: Session):
    
        # Feel free to combine local/udtf ingestion and partition column/predicates
        # as stated in the understanding parallelism section
    
        # Call dbapi to pull data from target table
    
        df = session.read.dbapi(
            create_pg_connection,
            table="target_table"
        )
    
        # Call dbapi to pull data from target query
    
        df_query = session.read.dbapi(
            create_pg_connection,
            query="select * from target_table"
        )
    
        # Pull data from target table with parallelism using partition column
    
        df_local_par_column = session.read.dbapi(
            create_pg_connection,
            table="target_table",
            fetch_size=100000,
            num_partitions=4,
            column="ID",  # swap with the column you want your partition based on
            upper_bound=10000,
            lower_bound=0
        )
    
        udtf_configs = {
            "external_access_integration": "<your external access integration>"
        }
    
        # Pull data from target table with udtf ingestion with parallelism using predicates
    
        df_udtf_predicates = session.read.dbapi(
            create_pg_connection,
            table="target_table",
            udtf_configs=udtf_configs,
            fetch_size=100000,
            predicates=[
                "ID < 3",
                "ID >= 3"
            ]
        )
        return df
    
    $$;
    CALL sp_pg_dbapi();
    
    Copy

Using DB-API to connect to PostgreSQL from a Snowflake notebook

  1. From Snowflake Notebook packages, select snowflake-snowpark-python and psycopg2.

  2. Configure an external access integration (EAI), which is required to allow Snowflake to connect to the source endpoint.

    Nota

    PrivateLink is recommended for secure data transfer, especially when you’re dealing with sensitive information. Ensure that your Snowflake account has the necessary PrivateLink privileges enabled and that the PrivateLink feature is configured and active in your Snowflake Notebook environment.

  3. Configure the secret, a network rule to allow egress to the source endpoint, and EAI:

    -- Configure the secret
    
    CREATE OR REPLACE SECRET pg_secret
        TYPE = PASSWORD
        USERNAME = 'pg_username'
        PASSWORD = 'pg_password';
    
    ALTER NOTEBOOK pg_notebook SET SECRETS = ('snowflake-secret-object' = pg_secret);
    
    -- Configure the network rule to allow egress to the source endpoint
    
    CREATE OR REPLACE NETWORK RULE pg_network_rule
        MODE = EGRESS
        TYPE = HOST_PORT
        VALUE_LIST = ('pg_host:pg_port');
    
    -- Configure external access integration
    
    CREATE OR REPLACE EXTERNAL ACCESS INTEGRATION pg_access_integration
        ALLOWED_NETWORK_RULES = (pg_network_rule)
        ALLOWED_AUTHENTICATION_SECRETS = (pg_secret)
        ENABLED = true;
    
    Copy
  4. Configurar acesso externo para o Snowflake Notebooks, and then restart the notebook session.

  5. Use the DB-API to pull data from PostgreSQL in a Python cell of a Snowflake notebook:

    # Get the user name and password from :code:`pg_secret`
    
    import _snowflake
    username_password_object = _snowflake.get_username_password('snowflake-secret-object')
    USER = username_password_object.username
    PASSWORD = username_password_object.password
    
    import snowflake.snowpark.context
    session = snowflake.snowpark.context.get_active_session()
    
    # Define the factory method for creating a connection to PostgreSQL
    
    def create_pg_connection():
        import psycopg2
        connection = psycopg2.connect(
            host="pg_host",
            port=pg_port,
            dbname="pg_dbname",
            user=USER,
            password=PASSWORD,
            # Optional: include this parameter for source tracing
            application_name="snowflake-snowpark-python"
        )
        return connection
    
    # Feel free to combine local/udtf ingestion and partition column/predicates as
    # stated in the understanding parallelism section
    
    # Call dbapi to pull data from target table
    
    df = session.read.dbapi(
        create_pg_connection,
        table="target_table"
    )
    
    # Call dbapi to pull data from target query
    
    df_query = session.read.dbapi(
        create_pg_connection,
        query="select * from target_table"
    )
    
    # Pull data from target table with parallelism using partition column
    
    df_local_par_column = session.read.dbapi(
        create_pg_connection,
        table="target_table",
        fetch_size=100000,
        num_partitions=4,
        column="ID",  # swap with the column you want your partition based on
        upper_bound=10000,
        lower_bound=0
    )
    
    udtf_configs = {
        "external_access_integration": "<your external access integration>"
    }
    
    # Pull data from target table with udtf ingestion with parallelism using predicates
    
    df_udtf_predicates = session.read.dbapi(
        create_pg_connection,
        table="target_table",
        udtf_configs=udtf_configs,
        fetch_size=100000,
        predicates=[
            "ID < 3",
            "ID >= 3"
        ]
    )
    
    # Save data into sf_table
    
    df.write.mode("overwrite").save_as_table('sf_table')
    # Get the user name and password from :code:`pg_secret`
    
    Copy

Source tracing when using DB-API to connect to PostgreSQL

  1. Inclua uma tag do Snowpark na função de criação da conexão.

    def create_pg_connection():
        import psycopg2
        connection = psycopg2.connect(
            host="pg_host",
            port=pg_port,
            dbname="pg_dbname",
            user="pg_user",
            password="pg_password",
            # Include this parameter for source tracing
            application_name="snowflake-snowpark-python"
        )
        return connection
    
    Copy
  2. Execute o seguinte SQL na fonte de dados para capturar consultas do Snowpark que ainda estão ativas:

    SELECT
        pid,
        usename AS username,
        datname AS database,
        application_name,
        client_addr,
        state,
        query_start,
        query
    FROM
        pg_stat_activity
    WHERE
        application_name = 'snowflake-snowpark-python';
    
    Copy

MySQL

To connect to MySQL from Snowpark, you need the following two packages:

The following code examples show how to connect to MySQL from a Snowpark client, stored procedures, and a Snowflake notebook.

Use the DB-API to connect to MySQL from a Snowpark client

  1. Install pymysql:

    pip install snowflake-snowpark-python[pandas]
    pip install pymysql
    
    Copy
  2. Define the factory method for creating a connection to MySQL:

    def create_mysql_connection():
        import pymysql
        connection = pymysql.connect(
            host="mysql_host",
            port=mysql_port,
            database="mysql_db",
            user="mysql_user",
            password="mysql_password",
            # Optional: include this parameter for source tracing
            init_command="SET @program_name='snowflake-snowpark-python';"
        )
        return connection
    
    # Feel free to combine local/udtf ingestion and partition column/predicates as
    # stated in the understanding parallelism section
    
    # Call dbapi to pull data from target table
    
    df = session.read.dbapi(
        create_mysql_connection,
        table="target_table"
    )
    
    # Call dbapi to pull data from target query
    
    df_query = session.read.dbapi(
        create_mysql_connection,
        query="select * from target_table"
    )
    
    # Pull data from target table with parallelism using partition column
    
    df_local_par_column = session.read.dbapi(
        create_mysql_connection,
        table="target_table",
        fetch_size=100000,
        num_partitions=4,
        column="ID",  # swap with the column you want your partition based on
        upper_bound=10000,
        lower_bound=0
    )
    
    udtf_configs = {
        "external_access_integration": "<your external access integration>"
    }
    
    # Pull data from target table with udtf ingestion with parallelism using predicates
    
    df_udtf_predicates = session.read.dbapi(
        create_mysql_connection,
        table="target_table",
        udtf_configs=udtf_configs,
        fetch_size=100000,
        predicates=[
            "ID < 3",
            "ID >= 3"
        ]
    )
    
    Copy

Uso de DB-API para conectar-se a MySQL de um procedimento armazenado

  1. Configure an external access integration (EAI), which is required to allow Snowflake to connect to the source endpoint.

    Nota

    PrivateLink is recommended for secure data transfer, especially when you’re dealing with sensitive information. Ensure that your Snowflake account has the necessary PrivateLink privileges enabled and that the PrivateLink feature is configured and active in your Snowflake Notebook environment.

  2. Configure the secret, a network rule to allow egress to the source endpoint, and EAI:

    CREATE OR REPLACE SECRET mysql_secret
        TYPE = PASSWORD
        USERNAME = 'mysql_username'
        PASSWORD = 'mysql_password';
    
    -- configure a network rule.
    
    CREATE OR REPLACE NETWORK RULE mysql_network_rule
        MODE = EGRESS
        TYPE = HOST_PORT
        VALUE_LIST = ('mysql_host:mysql_port');
    
    -- configure an external access integration
    
    CREATE OR REPLACE EXTERNAL ACCESS INTEGRATION mysql_access_integration
        ALLOWED_NETWORK_RULES = (mysql_network_rule)
        ALLOWED_AUTHENTICATION_SECRETS = (mysql_secret)
            ENABLED = true;
    
    Copy
  3. Use the Snowpark Python DB-API to pull data from MySQL in a Python stored procedure:

    CREATE OR REPLACE PROCEDURE sp_mysql_dbapi()
        RETURNS TABLE()
        LANGUAGE PYTHON
        RUNTIME_VERSION='3.11'
        HANDLER='run'
        PACKAGES=('snowflake-snowpark-python', 'pymysql')
        EXTERNAL_ACCESS_INTEGRATIONS = (mysql_access_integration)
        SECRETS = ('cred' = mysql_secret )
    AS $$
    
    # Get user name and password from mysql_secret
    
    import _snowflake
        username_password_object = _snowflake.get_username_password('cred')
        USER = username_password_object.username
        PASSWORD = username_password_object.password
    
    # Define the factory method for creating a connection to MySQL
    
    from snowflake.snowpark import session
    
    def create_mysql_connection():
        import pymysql
        connection = pymysql.connect(
            host="mysql_host",
            port=mysql_port,
            dbname="mysql_dbname",
            user=USER,
            password=PASSWORD,
            # Optional: include this parameter for source tracing
            init_command="SET @program_name='snowflake-snowpark-python';"
        )
        return connection
    
    # Using Snowpark Python DB-API to pull data from MySQL in a Python stored procedure.
    
    def run(session: Session):
        # Feel free to combine local/udtf ingestion and partition column/predicates
        # as stated in the understanding parallelism section
    
        # Call dbapi to pull data from target table
    
        df = session.read.dbapi(
            create_mysql_connection,
            table="target_table"
        )
    
        # Call dbapi to pull data from target query
    
        df_query = session.read.dbapi(
            create_mysql_connection,
            query="select * from target_table"
        )
    
        # Pull data from target table with parallelism using partition column
    
        df_local_par_column = session.read.dbapi(
            create_mysql_connection,
            table="target_table",
            fetch_size=100000,
            num_partitions=4,
            column="ID",  # swap with the column you want your partition based on
            upper_bound=10000,
            lower_bound=0
        )
    
        udtf_configs = {
            "external_access_integration": "<your external access integration>"
        }
    
        # Pull data from target table with udtf ingestion with parallelism using predicates
    
        df_udtf_predicates = session.read.dbapi(
            create_mysql_connection,
            table="target_table",
            udtf_configs=udtf_configs,
            fetch_size=100000,
            predicates=[
                "ID < 3",
                "ID >= 3"
            ]
        )
        return df
    $$;
    
    CALL sp_mysql_dbapi();
    
    Copy

Using DB-API to connect to MySQL from a Snowflake notebook

  1. From Snowflake Notebook packages, select snowflake-snowpark-python and pymysql.

  2. Configure an external access integration (EAI), which is required to allow Snowflake to connect to the source endpoint.

    Nota

    PrivateLink is recommended for secure data transfer, especially when you’re dealing with sensitive information. Ensure that your Snowflake account has the necessary PrivateLink privileges enabled and that the PrivateLink feature is configured and active in your Snowflake Notebook environment.

  3. Configure the secret, a network rule to allow egress to the source endpoint, and EAI:

    CREATE OR REPLACE SECRET mysql_secret
        TYPE = PASSWORD
        USERNAME = 'mysql_username'
        PASSWORD = 'mysql_password';
    
    ALTER NOTEBOOK mynotebook SET SECRETS = ('snowflake-secret-object' = mysql_secret);
    
    -- configure a network rule.
    CREATE OR REPLACE NETWORK RULE mysql_network_rule
        MODE = EGRESS
        TYPE = HOST_PORT
        VALUE_LIST = ('mysql_host:mysql_port');
    
    -- configure an EAI
    CREATE OR REPLACE EXTERNAL ACCESS INTEGRATION mysql_access_integration
        ALLOWED_NETWORK_RULES = (mysql_network_rule)
        ALLOWED_AUTHENTICATION_SECRETS = (mysql_secret)
        ENABLED = true;
    
    Copy
  4. Configurar acesso externo para o Snowflake Notebooks, and then restart the notebook session.

  5. Use the DB-API to pull data from MySQL in a Python cell of a Snowflake notebook:

    # Get user name and password from mysql_secret
    import _snowflake
    username_password_object = _snowflake.get_username_password('snowflake-secret-object')
    USER = username_password_object.username
    PASSWORD = username_password_object.password
    
    import snowflake.snowpark.context
    session = snowflake.snowpark.context.get_active_session()
    
    # Define the factory method for creating a connection to MySQL
    
    def create_mysql_connection():
        import pymysql
        connection = pymysql.connect(
            host="mysql_host",
            port=mysql_port,
            dbname="mysql_dbname",
            user=USER,
            password=PASSWORD,
            # Optional: include this parameter for source tracing
            init_command="SET @program_name='snowflake-snowpark-python';"
        )
        return connection
    
    # Feel free to combine local/udtf ingestion and partition column/predicates as
    # stated in the understanding parallelism section
    
    # Call dbapi to pull data from target table
    
    df = session.read.dbapi(
        create_mysql_connection,
        table="target_table"
    )
    
    # Call dbapi to pull data from target query
    
    df_query = session.read.dbapi(
        create_mysql_connection,
        query="select * from target_table"
    )
    
    # Pull data from target table with parallelism using partition column
    
    df_local_par_column = session.read.dbapi(
        create_mysql_connection,
        table="target_table",
        fetch_size=100000,
        num_partitions=4,
        column="ID",  # swap with the column you want your partition based on
        upper_bound=10000,
        lower_bound=0
    )
    
    udtf_configs = {
        "external_access_integration": "<your external access integration>"
    }
    
    # Pull data from target table with udtf ingestion with parallelism using predicates
    
    df_udtf_predicates = session.read.dbapi(
        create_mysql_connection,
        table="target_table",
        udtf_configs=udtf_configs,
        fetch_size=100000,
        predicates=[
            "ID < 3",
            "ID >= 3"
        ]
    )
    
    # Save data into sf_table
    
    df.write.mode("overwrite").save_as_table('sf_table')
    
    Copy

Rastreamento da fonte ao usar a DB-API para conexão com o MySQL

  1. Inclua uma tag do Snowpark na função de criação da conexão.

    def create_mysql_connection():
        import pymysql
        connection = pymysql.connect(
            host="mysql_host",
            port=mysql_port,
            database="mysql_db",
            user="mysql_user",
            password="mysql_password",
            # include this parameter for source tracing
            init_command="SET @program_name='snowflake-snowpark-python';"
        )
        return connection
    
    Copy
  2. Execute o seguinte SQL na fonte de dados para capturar consultas do Snowpark:

    SELECT *
    FROM performance_schema.events_statements_history_long
    WHERE THREAD_ID = (
        SELECT THREAD_ID
        FROM performance_schema.events_statements_history_long
        WHERE SQL_TEXT = "SET @program_name='snowflake-snowpark-python'"
        ORDER BY EVENT_ID DESC
        LIMIT 1
    )
    
    Copy

Databricks

To connect to Databricks from Snowpark, you need the following two packages:

The following code examples show how to connect to Databricks from a Snowpark client, stored procedures, and a Snowflake notebook.

Uso de DB-API para conectar-se ao Databricks a partir de um cliente Snowpark

  1. Install databricks-sql-connector:

    pip install snowflake-snowpark-python[pandas]
    pip install databricks-sql-connector
    
    Copy
  2. Define the factory method for creating a connection to Databricks:

    def create_dbx_connection():
        import databricks.sql
        connection = databricks.sql.connect(
            server_hostname=HOST,
            http_path=PATH,
            access_token=ACCESS_TOKEN
        )
        return connection
    
    # Feel free to combine local/udtf ingestion and partition column/predicates as
    # stated in the understanding parallelism section
    
    # Call dbapi to pull data from target table
    
    df = session.read.dbapi(
        create_dbx_connection,
        table="target_table"
    )
    
    # Call dbapi to pull data from target query
    
    df_query = session.read.dbapi(
        create_dbx_connection,
        query="select * from target_table"
    )
    
    # Pull data from target table with parallelism using partition column
    
    df_local_par_column = session.read.dbapi(
        create_dbx_connection,
        table="target_table",
        fetch_size=100000,
        num_partitions=4,
        column="ID",  # swap with the column you want your partition based on
        upper_bound=10000,
        lower_bound=0
    )
    
    udtf_configs = {
        "external_access_integration": "<your external access integration>"
    }
    
    # Pull data from target table with udtf ingestion with parallelism using predicates
    
    df_udtf_predicates = session.read.dbapi(
        create_dbx_connection,
        table="target_table",
        udtf_configs=udtf_configs,
        fetch_size=100000,
        predicates=[
            "ID < 3",
            "ID >= 3"
        ]
    )
    
    Copy

Uso de DB-API para conectar-se ao Databricks a partir de um procedimento armazenado

  1. Configure an external access integration (EAI), which is required to allow Snowflake to connect to the source endpoint.

    Nota

    PrivateLink is recommended for secure data transfer, especially when you’re dealing with sensitive information. Ensure that your Snowflake account has the necessary PrivateLink privileges enabled and that the PrivateLink feature is configured and active in your Snowflake Notebook environment.

  2. Configure the secret, a network rule to allow egress to the source endpoint, and EAI:

    CREATE OR REPLACE SECRET dbx_secret
        TYPE = GENERIC_STRING
        SECRET_STRING = 'dbx_access_token';
    
    CREATE OR REPLACE NETWORK RULE dbx_network_rule
        MODE = EGRESS
        TYPE = HOST_PORT
        VALUE_LIST = ('dbx_host:dbx_port');
    
    CREATE OR REPLACE EXTERNAL ACCESS INTEGRATION dbx_access_integration
        ALLOWED_NETWORK_RULES = (dbx_network_rule)
        ALLOWED_AUTHENTICATION_SECRETS = (dbx_secret)
        ENABLED = true;
    
    Copy
  3. Use the Snowpark Python DB-API to pull data from Databricks in a Python stored procedure:

    CREATE OR REPLACE PROCEDURE sp_dbx_dbapi()
        RETURNS TABLE()
        LANGUAGE PYTHON
        RUNTIME_VERSION='3.11'
        HANDLER='run'
        PACKAGES=('snowflake-snowpark-python', 'databricks-sql-connector')
        EXTERNAL_ACCESS_INTEGRATIONS = (dbx_access_integration)
        SECRETS = ('cred' = dbx_secret )
    AS $$
    
    # Get user name and password from dbx_secret
    
    import _snowflake
    ACCESS_TOKEN = _snowflake.get_generic_secret_string('cred')
    
    from snowflake.snowpark import Session
    
    # Define the method for creating a connection to Databricks
    def create_dbx_connection():
        import databricks.sql
        connection = databricks.sql.connect(
            server_hostname="dbx_host",
            http_path="dbx_path",
            access_token=ACCESS_TOKEN,
        )
        return connection
    
    # Using Snowpark Python DB-API to pull data from DataBricks in a Python stored procedure.
    
    def run(session: Session):
        # Feel free to combine local/udtf ingestion and partition column/predicates
        # as stated in the understanding parallelism section
    
        # Call dbapi to pull data from target table
    
        df = session.read.dbapi(
            create_dbx_connection,
            table="target_table"
        )
    
        # Call dbapi to pull data from target query
    
        df_query = session.read.dbapi(
            create_dbx_connection,
            query="select * from target_table"
        )
    
        # Pull data from target table with parallelism using partition column
    
        df_local_par_column = session.read.dbapi(
            create_dbx_connection,
            table="target_table",
            fetch_size=100000,
            num_partitions=4,
            column="ID",  # swap with the column you want your partition based on
            upper_bound=10000,
            lower_bound=0
        )
    
        udtf_configs = {
            "external_access_integration": "<your external access integration>"
        }
    
        # Pull data from target table with udtf ingestion with parallelism using predicates
    
        df_udtf_predicates = session.read.dbapi(
            create_dbx_connection,
            table="target_table",
            udtf_configs=udtf_configs,
            fetch_size=100000,
            predicates=[
                "ID < 3",
                "ID >= 3"
            ]
        )
        return df
    
    $$;
    
    CALL sp_dbx_dbapi();
    
    Copy

Using DB-API to connect to Databricks from a Snowflake notebook

  1. Em Pacotes de notebooks do Snowflake, selecione snowflake-snowpark-python e databricks-sql-connector.

  2. Configure an external access integration (EAI), which is required to allow Snowflake to connect to the source endpoint.

    Nota

    PrivateLink is recommended for secure data transfer, especially when you’re dealing with sensitive information. Ensure that your Snowflake account has the necessary PrivateLink privileges enabled and that the PrivateLink feature is configured and active in your Snowflake Notebook environment.

  3. Configure the secret, a network rule to allow egress to the source endpoint, and EAI:

    CREATE OR REPLACE SECRET dbx_secret
    TYPE = GENERIC_STRING
    SECRET_STRING = 'dbx_access_token';
    
    ALTER NOTEBOOK mynotebook SET SECRETS = ('snowflake-secret-object' = dbx_secret);
    
    CREATE OR REPLACE NETWORK RULE dbx_network_rule
    MODE = EGRESS
    TYPE = HOST_PORT
    VALUE_LIST = ('dbx_host:dbx_port');
    
    CREATE OR REPLACE EXTERNAL ACCESS INTEGRATION dbx_access_integration
    ALLOWED_NETWORK_RULES = (dbx_network_rule)
    ALLOWED_AUTHENTICATION_SECRETS = (dbx_secret)
    ENABLED = true;
    
    Copy
  4. Configurar acesso externo para o Snowflake Notebooks, and then restart the notebook session.

  5. Use the DB-API to pull data from Databricks in a Python cell of a Snowflake notebook:

    # Get user name and password from dbx_secret
    
    import _snowflake
    ACCESS_TOKEN = _snowflake.get_generic_secret_string('cred')
    
    import snowflake.snowpark.context
    session = snowflake.snowpark.context.get_active_session()
    
    # Define the factory method for creating a connection to Databricks
    
    def create_dbx_connection():
        import databricks.sql
        connection = databricks.sql.connect(
            server_hostname="dbx_host",
            http_path="dbx_path",
            access_token=ACCESS_TOKEN,
        )
        return connection
    
    # Feel free to combine local/udtf ingestion and partition column/predicates as
    # stated in the understanding parallelism section
    
    # Call dbapi to pull data from target table
    
    df = session.read.dbapi(
        create_dbx_connection,
        table="target_table"
    )
    
    # Call dbapi to pull data from target query
    
    df_query = session.read.dbapi(
        create_dbx_connection,
        query="select * from target_table"
    )
    
    # Pull data from target table with parallelism using partition column
    
    df_local_par_column = session.read.dbapi(
        create_dbx_connection,
        table="target_table",
        fetch_size=100000,
        num_partitions=4,
        column="ID",  # swap with the column you want your partition based on
        upper_bound=10000,
        lower_bound=0
    )
    
    udtf_configs = {
        "external_access_integration": "<your external access integration>"
    }
    
    # Pull data from target table with udtf ingestion with parallelism using predicates
    
    df_udtf_predicates = session.read.dbapi(
        create_dbx_connection,
        table="target_table",
        udtf_configs=udtf_configs,
        fetch_size=100000,
        predicates=[
            "ID < 3",
            "ID >= 3"
        ]
    )
    
    # Save data into sf_table
    
    df.write.mode("overwrite").save_as_table('sf_table')
    
    Copy

Source tracing when using DB-API to connect to Databricks

  1. Inclua uma tag do Snowpark na função de criação da conexão.

    def create_dbx_connection():
        import databricks.sql
        connection = databricks.sql.connect(
            server_hostname=HOST,
            http_path=PATH,
            access_token=ACCESS_TOKEN,
            # include this parameter for source tracing
            user_agent_entry="snowflake-snowpark-python"
        )
        return connection
    
    Copy
  2. Navegue até o histórico de consultas no console do DataBricks e procure a consulta que tem a fonte snowflake-snowpark-python.

Limitações

The Snowpark Python DB-API supports only Python DB-API 2.0–compliant drivers (for example, pyodbc or oracledb). JDBC drivers are not supported in this release.