Using the Snowpark Python DB-API¶
With the Snowpark Python DB-API, Snowpark Python users can programmatically pull data from external databases into Snowflake. The DB-API includes:
Python DB-API support: Connect to external databases using Python’s standard DB-API 2.0 drivers.
간소화된 설정: :code:`pip`를 사용하여 추가 종속성을 관리하지 않고도 필요한 드라이버를 설치할 수 있습니다.
이러한 APIs를 사용하면 데이터를 Snowflake 테이블로 원활하게 가져오고, :doc:`Snowpark DataFrames</developer-guide/snowpark/python/working-with-dataframes>`를 이용해 고급 분석용으로 변환할 수 있습니다.
The DB-API can be used in a similar way as the Spark JDBC API. Most parameters are designed to be identical or similar for better parity. At the same time, Snowpark emphasizes a Python-first design with intuitive naming conventions that avoid JDBC-specific configurations. This provides Python developers with a familiar experience. For more information that compares the Snowpark Python DB-API with the Spark JDBC API, see the following table:
DB-API 매개 변수¶
매개 변수 |
Snowpark Python DB-API |
|---|---|
|
Function to create a Python DB-API connection |
|
Specifies the table in the source database |
|
SQL query wrapped as a subquery for reading data |
|
Partitioning column for parallel reads |
|
Lower bound for partitioning |
|
Upper bound for partitioning |
|
Number of partitions for parallelism |
|
Timeout for SQL execution (in seconds) |
|
Number of rows fetched per round trip |
|
Custom schema for pulling data from external databases |
|
Number of workers for parallel fetching and pulling data from external databases |
|
List of conditions for WHERE clause partitions |
|
Executes a SQL or PL/SQL statement upon session initialization |
|
Executes the workload using a Snowflake UDTF for better performance |
|
Number of fetched batches to be merged into a single Parquet file before it is uploaded |
병렬 처리 이해하기¶
The Snowpark Python DB-API has two underlying forms of ingestion mechanisms:
- 로컬 수집
In local ingestion, Snowpark first fetches data from external sources to your local environment, where the
dbapi()function is called and converts them to Parquet files. Next, Snowpark uploads these Parquet files to a temporary Snowflake stage and copies them into a temporary table from the stage.- UDTF 수집
UDTF 수집에서 모든 워크로드는 Snowflake 서버에서 실행됩니다. Snowpark가 먼저 UDTF를 생성하고 실행하면, UDTF는 데이터를 Snowflake로 직접 수집하고 임시 테이블에 저장합니다.
The Snowpark Python DB-API also has two ways to parallelize and accelerate ingestion:
- 파티션 열
This method divides source data into multiple partitions based on four parameters when users call
dbapi():columnlower_boundupper_boundnum_partitions
이 네 가지 매개 변수는 동시에 설정해야 하며 :code:`column`은 숫자 또는 날짜 유형이어야 합니다.
- Predicates
This method divides source data into partitions based on parameter predicates, which are a list of expressions suitable for inclusion in
WHEREclauses, where each expression defines a partition. Predicates provide a more flexible way of dividing partitions; for example, you can divide partitions on Boolean or non-numeric columns.
The Snowpark Python DB-API also allows the adjustment of parallelism level within a partition:
- Fetch_size
Within a partition, the API fetches rows in chunks defined by fetch_size. These rows are written to Snowflake in parallel as they are fetched, which allows reading and writing to overlap and maximizes throughput.
By combining the listed methods of ingestion and parallelism, Snowflake has four ways of ingestion:
파티션 열을 사용한 로컬 수집
df_local_par_column = session.read.dbapi( create_connection, table="target_table", fetch_size=100000, num_partitions=4, column="ID", # Swap with the column you want your partition based on upper_bound=10000, lower_bound=0 )
조건자를 사용한 로컬 수집
df_local_predicates = session.read.dbapi( create_connection, table="target_table", fetch_size=100000, predicates=[ "ID < 3", "ID >= 3" ] )
파티션 열을 사용한 UDTF 수집
udtf_configs = { "external_access_integration": "<your external access integration>" } df_udtf_par_column = session.read.dbapi( create_connection, table="target_table", udtf_configs=udtf_configs, fetch_size=100000, num_partitions=4, column="ID", # Swap with the column you want your partition based on upper_bound=10000, lower_bound=0 )
조건자를 사용한 UDTF 수집
udtf_configs = { "external_access_integration": "<your external access integration>" } df_udtf_predicates = session.read.dbapi( create_dbx_connection, table="target_table", udtf_configs=udtf_configs, fetch_size=100000, predicates=[ "ID < 3", "ID >= 3" ] )
SQL Server¶
To connect to SQL Server from Snowpark, you need the following three packages:
Snowpark: `snowflake-snowpark-python[pandas]<https://pypi.org/project/snowflake-snowpark-python/>`_
SQL Server ODBC Driver: Microsoft ODBC Driver for SQL Server
드라이버를 설치하면 Microsoft의 EULA에 동의하는 것입니다.
오픈 소스 pyodbc 라이브러리: `pyodbc<https://pypi.org/project/pyodbc/>`_
The following code examples show how to connect to SQL Server from a Snowpark client and a stored procedure.
Use the DB-API to connect to SQL Server from a Snowpark client¶
Install the Python SQL Driver:
/bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install.sh)" brew tap microsoft/mssql-release https://github.com/Microsoft/homebrew-mssql-release brew update HOMEBREW_ACCEPT_EULA=Y brew install msodbcsql18 mssql-tools18
Install
snowflake-snowpark-python[pandas]andpyodbc:pip install snowflake-snowpark-python[pandas] pip install pyodbc
Define the factory method for creating a connection to SQL Server:
def create_sql_server_connection(): import pyodbc SERVER = "<your host name>" PORT = <your port> UID = "<your user name>" PWD = "<your password>" DATABASE = "<your database name>" connection_str = ( f"DRIVER={{ODBC Driver 18 for SQL Server}};" f"SERVER={SERVER}:{PORT};" f"UID={UID};" f"PWD={PWD};" f"DATABASE={DATABASE};" "TrustServerCertificate=yes" "Encrypt=yes" # Optional to identify source of queries "APP=snowflake-snowpark-python;" ) connection = pyodbc.connect(connection_str) return connection # Feel free to combine local/udtf ingestion and partition column/predicates as # stated in the understanding parallelism section # Call dbapi to pull data from target table df = session.read.dbapi( create_sql_server_connection, table="target_table" ) # Call dbapi to pull data from target query df_query = session.read.dbapi( create_sql_server_connection, query="select * from target_table" ) # Pull data from target table with parallelism using partition column df_local_par_column = session.read.dbapi( create_sql_server_connection, table="target_table", fetch_size=100000, num_partitions=4, column="ID", # Swap with the column you want your partition based on upper_bound=10000, lower_bound=0 ) udtf_configs = { "external_access_integration": "<your external access integration>" } # Pull data from target table with udtf ingestion with parallelism using predicates df_udtf_predicates = session.read.dbapi( create_sql_server_connection, table="target_table", udtf_configs=udtf_configs, fetch_size=100000, predicates=[ "ID < 3", "ID >= 3" ] )
Use the DB-API to connect to SQL Server from a stored procedure¶
Configure an external access integration (EAI), which is required to allow Snowflake to connect to the source endpoint.
참고
PrivateLink is recommended for secure data transfer, especially when you’re dealing with sensitive information. Ensure that your Snowflake account has the necessary PrivateLink privileges enabled and that the PrivateLink feature is configured and active in your Snowflake Notebook environment.
Configure the secret, a network rule to allow egress to the source endpoint, and EAI:
-- Configure a secret to allow egress to the source endpoint CREATE OR REPLACE SECRET mssql_secret TYPE = PASSWORD USERNAME = 'mssql_username' PASSWORD = 'mssql_password'; -- Configure a network rule to allow egress to the source endpoint CREATE OR REPLACE NETWORK RULE mssql_network_rule MODE = EGRESS TYPE = HOST_PORT VALUE_LIST = ('mssql_host:mssql_port'); -- Configure an external access integration CREATE OR REPLACE EXTERNAL ACCESS INTEGRATION mssql_access_integration ALLOWED_NETWORK_RULES = (mssql_network_rule) ALLOWED_AUTHENTICATION_SECRETS = (mssql_secret) ENABLED = true;
Use the DB-API to pull data from SQL Server in a Python stored procedure:
CREATE OR REPLACE PROCEDURE sp_mssql_dbapi() RETURNS TABLE() LANGUAGE PYTHON RUNTIME_VERSION='3.11' HANDLER='run' PACKAGES=('snowflake-snowpark-python', 'pyodbc', 'msodbcsql') EXTERNAL_ACCESS_INTEGRATIONS = (mssql_access_integration) SECRETS = ('cred' = mssql_secret ) AS $$ # Get user name and password from mssql_secret import _snowflake username_password_object = _snowflake.get_username_password('cred') USER = username_password_object.username PASSWORD = username_password_object.password # Define a method to connect to SQL Server_hostname from snowflake.snowpark import Session def create_sql_server_connection(): import pyodbc host = "<your host>" port = <your port> username = USER password = PASSWORD database = "<your database name>" connection_str = ( f"DRIVER={{ODBC Driver 18 for SQL Server}};" f"SERVER={host},{port};" f"DATABASE={database};" f"UID={username};" f"PWD={password};" "TrustServerCertificate=yes" "Encrypt=yes" # Optional to identify source of queries "APP=snowflake-snowpark-python;" ) connection = pyodbc.connect(connection_str) return connection def run(session: Session): # Feel free to combine local/udtf ingestion and partition column/predicates # as stated in the understanding parallelism section # Call dbapi to pull data from target table df = session.read.dbapi( create_sql_server_connection, table="target_table" ) # Call dbapi to pull data from target query df_query = session.read.dbapi( create_sql_server_connection, query="select * from target_table" ) # Pull data from target table with parallelism using partition column df_local_par_column = session.read.dbapi( create_sql_server_connection, table="target_table", fetch_size=100000, num_partitions=4, column="ID", # swap with the column you want your partition based on upper_bound=10000, lower_bound=0 ) udtf_configs = { "external_access_integration": "<your external access integration>" } # Pull data from target table with udtf ingestion with parallelism using predicates df_udtf_predicates = session.read.dbapi( create_sql_server_connection, table="target_table", udtf_configs=udtf_configs, fetch_size=100000, predicates=[ "ID < 3", "ID >= 3" ] ) return df $$; CALL sp_mssql_dbapi();
Use the DB-API to connect to SQL Server from a Snowflake notebook¶
From Snowflake Notebook packages, select
snowflake-snowpark-pythonandpyodbc.In the Files pane, open the file
environment.yml, and under Dependencies, add the following line of code after other entries:- msodbcsql18
Configure the secret, a network rule to allow egress to the source endpoint, and EAI:
-- Configure a secret to allow egress to the source endpoint CREATE OR REPLACE SECRET mssql_secret TYPE = PASSWORD USERNAME = 'mssql_username' PASSWORD = 'mssql_password'; ALTER NOTEBOOK mynotebook SET SECRETS = ('snowflake-secret-object' = mssql_secret); -- Configure a network rule to allow egress to the source endpoint CREATE OR REPLACE NETWORK RULE mssql_network_rule MODE = EGRESS TYPE = HOST_PORT VALUE_LIST = ('mssql_host:mssql_port'); -- Configure an external access integration CREATE OR REPLACE EXTERNAL ACCESS INTEGRATION mssql_access_integration ALLOWED_NETWORK_RULES = (mssql_network_rule) ALLOWED_AUTHENTICATION_SECRETS = (mssql_secret) ENABLED = true;
Snowflake Notebooks 에 대한 외부 액세스 설정, and then restart the notebook session.
Use the DB-API to pull data from SQL Server in a Python cell of a Snowflake notebook:
# Get user name and password from mssql_secret import _snowflake username_password_object = _snowflake.get_username_password('snowflake-secret-object') USER = username_password_object.username PASSWORD = username_password_object.password import snowflake.snowpark.context session = snowflake.snowpark.context.get_active_session() def create_sql_server_connection(): import pyodbc SERVER = SQL_SERVER_CONNECTION_PARAMETERS["SERVER"] UID = SQL_SERVER_CONNECTION_PARAMETERS["UID"] PWD = SQL_SERVER_CONNECTION_PARAMETERS["PWD"] DATABASE = "test_query_history" connection_str = ( f"DRIVER={{ODBC Driver 18 for SQL Server}};" f"SERVER={SERVER};" f"UID={UID};" f"PWD={PWD};" f"DATABASE={DATABASE};" "TrustServerCertificate=yes;" "Encrypt=yes;" # Optional to identify source of queries "APP=snowflake-snowpark-python;" ) connection = pyodbc.connect(connection_str) return connection # Feel free to combine local/udtf ingestion and partition column/predicates as # stated in the understanding parallelism section # Call dbapi to pull data from target table df = session.read.dbapi( create_sql_server_connection, table="target_table" ) # Call dbapi to pull data from target query df_query = session.read.dbapi( create_sql_server_connection, query="select * from target_table" ) # Pull data from target table with parallelism using partition column df_local_par_column = session.read.dbapi( create_sql_server_connection, table="target_table", fetch_size=100000, num_partitions=4, column="ID", # swap with the column you want your partition based on upper_bound=10000, lower_bound=0 ) udtf_configs = { "external_access_integration": "<your external access integration>" } # Pull data from target table with udtf ingestion with parallelism using predicates df_udtf_predicates = session.read.dbapi( create_sql_server_connection, table="target_table", udtf_configs=udtf_configs, fetch_size=100000, predicates=[ "ID < 3", "ID >= 3" ] ) # Save data into sf_table df.write.mode("overwrite").save_as_table('sf_table')
Source tracing when using the DB-API to connect to SQL Server¶
create connection 함수에 Snowpark의 태그를 포함합니다.
def create_sql_server_connection(): import pyodbc SERVER = "<your host name>" PORT = <your port> UID = "<your user name>" PWD = "<your password>" DATABASE = "<your database name>" connection_str = ( f"DRIVER={{ODBC Driver 18 for SQL Server}};" f"SERVER={SERVER}:{PORT};" f"UID={UID};" f"PWD={PWD};" f"DATABASE={DATABASE};" "TrustServerCertificate=yes" "Encrypt=yes" # include this parameter for source tracing "APP=snowflake-snowpark-python;" ) connection = pyodbc.connect(connection_str) return connection
데이터 소스에서 다음 SQL을 실행하여 Snowpark에서 여전히 라이브 상태인 쿼리를 캡처합니다.
SELECT s.session_id, s.program_name, r.status, t.text AS sql_text FROM sys.dm_exec_sessions s JOIN sys.dm_exec_requests r ON s.session_id = r.session_id CROSS APPLY sys.dm_exec_sql_text(r.sql_handle) AS t WHERE s.program_name = 'snowflake-snowpark-python';
Oracle¶
To connect to Oracle from Snowpark, you need the following two packages:
Snowpark: `snowflake-snowpark-python[pandas]<https://pypi.org/project/snowflake-snowpark-python/>`_
오픈 소스 oracledb 라이브러리: `oracledb<https://pypi.org/project/oracledb/>`_
The following code examples show how to connect to Oracle from a Snowpark client, stored procedures, and a Snowflake notebook.
Use the DB-API to connect to Oracle from a Snowpark client¶
Install
snowflake-snowpark-python[pandas]andoracledb:pip install snowflake-snowpark-python[pandas] pip install oracledb
Use the DB-API to pull data from Oracle and define the factory method for creating a connection to Oracle:
def create_oracle_db_connection(): import oracledb HOST = "<your host>" PORT = <your port> SERVICE_NAME = "<your service name>" USER = "<your user name>" PASSWORD = "your password" DSN = f"{HOST}:{PORT}/{SERVICE_NAME}" connection = oracledb.connect( user=USER, password=PASSWORD, dsn=DSN ) # Optional: include this parameter for source tracing connection.clientinfo = "snowflake-snowpark-python" return connection # Feel free to combine local/udtf ingestion and partition column/predicates as # stated in the understanding parallelism section # Call dbapi to pull data from target table df = session.read.dbapi( create_oracle_db_connection, table="target_table" ) # Call dbapi to pull data from target query df_query = session.read.dbapi( create_oracle_db_connection, query="select * from target_table" ) # Pull data from target table with parallelism using partition column df_local_par_column = session.read.dbapi( create_oracle_db_connection, table="target_table", fetch_size=100000, num_partitions=4, column="ID", # swap with the column you want your partition based on upper_bound=10000, lower_bound=0 ) udtf_configs = { "external_access_integration": "<your external access integration>" } # Pull data from target table with udtf ingestion with parallelism using predicates df_udtf_predicates = session.read.dbapi( create_oracle_db_connection, table="target_table", udtf_configs=udtf_configs, fetch_size=100000, predicates=[ "ID < 3", "ID >= 3" ] )
Use the DB-API to connect to Oracle from a stored procedure¶
Configure an external access integration (EAI), which is required to allow Snowflake to connect to the source endpoint.
참고
PrivateLink is recommended for secure data transfer, especially when you’re dealing with sensitive information. Ensure that your Snowflake account has the necessary PrivateLink privileges enabled and that the PrivateLink feature is configured and active in your Snowflake Notebook environment.
Configure the secret, a network rule to allow egress to the source endpoint, and EAI:
-- Configure the secret, a network rule to allow egress to the source endpoint, and EAI: CREATE OR REPLACE SECRET ora_secret TYPE = PASSWORD USERNAME = 'ora_username' PASSWORD = 'ora_password'; -- configure a network rule to allow egress to the source endpoint CREATE OR REPLACE NETWORK RULE ora_network_rule MODE = EGRESS TYPE = HOST_PORT VALUE_LIST = ('ora_host:ora_port'); -- configure an external access integration CREATE OR REPLACE EXTERNAL ACCESS INTEGRATION ora_access_integration ALLOWED_NETWORK_RULES = (ora_network_rule) ALLOWED_AUTHENTICATION_SECRETS = (ora_secret) ENABLED = true;
Use the Snowpark Python DB-API to pull data from Oracle in a Python stored procedure:
CREATE OR REPLACE PROCEDURE sp_ora_dbapi() RETURNS TABLE() LANGUAGE PYTHON RUNTIME_VERSION='3.11' HANDLER='run' PACKAGES=('snowflake-snowpark-python', 'oracledb') EXTERNAL_ACCESS_INTEGRATIONS = (ora_access_integration) SECRETS = ('cred' = ora_secret ) AS $$ # Get user name and password from ora_secret import _snowflake username_password_object = _snowflake.get_username_password('cred') USER = username_password_object.username PASSWORD = username_password_object.password # Define the factory method for creating a connection to Oracle from snowflake.snowpark import Session def create_oracle_db_connection(): import oracledb host = "ora_host" port = "ora_port" service_name = "ora_service" user = USER password = PASSWORD DSN = f"{host}:{port}/{service_name}" connection = oracledb.connect( user=USER, password=PASSWORD, dsn=DSN ) # Optional: include this parameter for source tracing connection.clientinfo = "snowflake-snowpark-python" return connection def run(session: Session): # Feel free to combine local/udtf ingestion and partition column/predicates # as stated in the understanding parallelism section # Call dbapi to pull data from target table df = session.read.dbapi( create_oracle_db_connection, table="target_table" ) # Call dbapi to pull data from target query df_query = session.read.dbapi( create_oracle_db_connection, query="select * from target_table" ) # Pull data from target table with parallelism using partition column df_local_par_column = session.read.dbapi( create_oracle_db_connection, table="target_table", fetch_size=100000, num_partitions=4, column="ID", # swap with the column you want your partition based on upper_bound=10000, lower_bound=0 ) udtf_configs = { "external_access_integration": "<your external access integration>" } # Pull data from target table with udtf ingestion with parallelism using predicates df_udtf_predicates = session.read.dbapi( create_oracle_db_connection, table="target_table", udtf_configs=udtf_configs, fetch_size=100000, predicates=[ "ID < 3", "ID >= 3" ] ) return df $$; CALL sp_ora_dbapi();
Use the DB-API to connect to Oracle from a Snowflake notebook¶
From Snowflake Notebook packages, select
snowflake-snowpark-pythonandoracledb.Configure an external access integration (EAI), which is required to allow Snowflake to connect to the source endpoint.
참고
PrivateLink is recommended for secure data transfer, especially when you’re dealing with sensitive information. Ensure that your Snowflake account has the necessary PrivateLink privileges enabled and that the PrivateLink feature is configured and active in your Snowflake Notebook environment.
Configure the secret, a network rule, and EAI to allow egress to the source endpoint:
-- Configure the secret, a network rule to allow egress to the source endpoint, and EAI: CREATE OR REPLACE SECRET mysql_secret TYPE = PASSWORD USERNAME = 'mysql_username' PASSWORD = 'mysql_password'; ALTER NOTEBOOK mynotebook SET SECRETS = ('snowflake-secret-object' = mysql_secret); -- configure a network rule to allow egress to the source endpoint CREATE OR REPLACE NETWORK RULE mysql_network_rule MODE = EGRESS TYPE = HOST_PORT VALUE_LIST = ('mysql_host:mysql_port'); -- configure an external access integration CREATE OR REPLACE EXTERNAL ACCESS INTEGRATION mysql_access_integration ALLOWED_NETWORK_RULES = (mysql_network_rule) ALLOWED_AUTHENTICATION_SECRETS = (mysql_secret) ENABLED = true;
Snowflake Notebooks 에 대한 외부 액세스 설정, and then restart the notebook session.
Use the DB-API to pull data from Oracle in a Python cell of a Snowflake notebook:
# Get user name and password from ora_secret import _snowflake username_password_object = _snowflake.get_username_password('snowflake-secret-object') USER = username_password_object.username PASSWORD = username_password_object.password import snowflake.snowpark.context session = snowflake.snowpark.context.get_active_session() # Define the factory method for creating a connection to Oracle def create_oracle_db_connection(): import oracledb host = "ora_host" port = "ora_port" service_name = "ora_service" user = USER password = PASSWORD DSN = f"{host}:{port}/{service_name}" connection = oracledb.connect( user=USER, password=PASSWORD, dsn=DSN, ) # Optional: include this parameter for source tracing connection.clientinfo = "snowflake-snowpark-python" return connection # Feel free to combine local/udtf ingestion and partition column/predicates as # stated in the understanding parallelism section # Call dbapi to pull data from target table df = session.read.dbapi( create_oracle_db_connection, table="target_table" ) # Call dbapi to pull data from target query df_query = session.read.dbapi( create_oracle_db_connection, query="select * from target_table" ) # Pull data from target table with parallelism using partition column df_local_par_column = session.read.dbapi( create_oracle_db_connection, table="target_table", fetch_size=100000, num_partitions=4, column="ID", # swap with the column you want your partition based on upper_bound=10000, lower_bound=0 ) udtf_configs = { "external_access_integration": "<your external access integration>" } # Pull data from target table with udtf ingestion with parallelism using predicates df_udtf_predicates = session.read.dbapi( create_oracle_db_connection, table="target_table", udtf_configs=udtf_configs, fetch_size=100000, predicates=[ "ID < 3", "ID >= 3" ] ) # Save data into sf_table df_ora.write.mode("overwrite").save_as_table('sf_table')
Source tracing when using the DB-API to connect to Oracle¶
create connection 함수에 Snowpark의 태그를 포함합니다.
def create_oracle_db_connection(): import oracledb HOST = "myhost" PORT = "myport" SERVICE_NAME = "myservice" USER = "myuser" PASSWORD = "mypassword" DSN = f"{HOST}:{PORT}/{SERVICE_NAME}" connection = oracledb.connect( user=USER, password=PASSWORD, dsn=DSN, ) # include this parameter for source tracing connection.clientinfo = "snowflake-snowpark-python" return connection
데이터 소스에서 다음 SQL을 실행하여 Snowpark에서 여전히 라이브 상태인 쿼리를 캡처합니다.
SELECT s.sid, s.serial#, s.username, s.module, q.sql_id, q.sql_text, q.last_active_time FROM v$session s JOIN v$sql q ON s.sql_id = q.sql_id WHERE s.client_info = 'snowflake-snowpark-python'
PostgreSQL¶
To connect to PostgreSQL from Snowpark, you need the following two packages:
Snowpark: `snowflake-snowpark-python[pandas]<https://pypi.org/project/snowflake-snowpark-python/>`_
오픈 소스 psycopg2 라이브러리: `psycopg2<https://pypi.org/project/psycopg2/>`_
The following code examples show how to connect to PostgreSQL from a Snowpark client, stored procedures, and a Snowflake notebook.
Use the DB-API to connect to PostgreSQL from a Snowpark client¶
Install
psycopg2:pip install psycopg2
Define the factory method for creating a connection to PostgreSQL:
def create_pg_connection(): import psycopg2 connection = psycopg2.connect( host="pg_host", port=pg_port, dbname="pg_dbname", user="pg_user", password="pg_password", # Optional: include this parameter for source tracing application_name="snowflake-snowpark-python" ) return connection # Feel free to combine local/udtf ingestion and partition column/predicates as # stated in the understanding parallelism section # Call dbapi to pull data from target table df = session.read.dbapi( create_pg_connection, table="target_table" ) # Call dbapi to pull data from target query df_query = session.read.dbapi( create_pg_connection, query="select * from target_table" ) # Pull data from target table with parallelism using partition column df_local_par_column = session.read.dbapi( create_pg_connection, table="target_table", fetch_size=100000, num_partitions=4, column="ID", # Swap with the column you want your partition based on upper_bound=10000, lower_bound=0 ) udtf_configs = { "external_access_integration": "<your external access integration>" } # Pull data from target table with udtf ingestion with parallelism using predicates df_udtf_predicates = session.read.dbapi( create_pg_connection, table="target_table", udtf_configs=udtf_configs, fetch_size=100000, predicates=[ "ID < 3", "ID >= 3" ] )
Use the DB-API to connect to PostgreSQL from a stored procedure¶
Configure an external access integration (EAI), which is required to allow Snowflake to connect to the source endpoint.
참고
PrivateLink is recommended for secure data transfer, especially when you’re dealing with sensitive information. Ensure that your Snowflake account has the necessary PrivateLink privileges enabled and that the PrivateLink feature is configured and active in your Snowflake Notebook environment.
Configure the secret, a network rule to allow egress to the source endpoint, and EAI:
-- configure a secret CREATE OR REPLACE SECRET pg_secret TYPE = PASSWORD USERNAME = 'pg_username' PASSWORD = 'pg_password'; -- configure a network rule. CREATE OR REPLACE NETWORK RULE pg_network_rule MODE = EGRESS TYPE = HOST_PORT VALUE_LIST = ('pg_host:pg_port'); -- configure an external access integration. CREATE OR REPLACE EXTERNAL ACCESS INTEGRATION pg_access_integration ALLOWED_NETWORK_RULES = (pg_network_rule) ALLOWED_AUTHENTICATION_SECRETS = (pg_secret) ENABLED = true;
Use the Snowpark Python DB-API to pull data from PostgreSQL in a Python stored procedure:
CREATE OR REPLACE PROCEDURE sp_pg_dbapi() RETURNS TABLE() LANGUAGE PYTHON RUNTIME_VERSION='3.11' HANDLER='run' PACKAGES=('snowflake-snowpark-python', 'psycopg2') EXTERNAL_ACCESS_INTEGRATIONS = (pg_access_integration) SECRETS = ('cred' = pg_secret ) AS $$ # Get user name and password from pg_secret import _snowflake username_password_object = _snowflake.get_username_password('cred') USER = username_password_object.username PASSWORD = username_password_object.password # Define the factory method for creating a connection to PostgreSQL from snowflake.snowpark import Session def create_pg_connection(): import psycopg2 connection = psycopg2.connect( host="pg_host", port=pg_port, dbname="pg_dbname", user=USER, password=PASSWORD, # Optional: include this parameter for source tracing application_name="snowflake-snowpark-python" ) return connection def run(session: Session): # Feel free to combine local/udtf ingestion and partition column/predicates # as stated in the understanding parallelism section # Call dbapi to pull data from target table df = session.read.dbapi( create_pg_connection, table="target_table" ) # Call dbapi to pull data from target query df_query = session.read.dbapi( create_pg_connection, query="select * from target_table" ) # Pull data from target table with parallelism using partition column df_local_par_column = session.read.dbapi( create_pg_connection, table="target_table", fetch_size=100000, num_partitions=4, column="ID", # swap with the column you want your partition based on upper_bound=10000, lower_bound=0 ) udtf_configs = { "external_access_integration": "<your external access integration>" } # Pull data from target table with udtf ingestion with parallelism using predicates df_udtf_predicates = session.read.dbapi( create_pg_connection, table="target_table", udtf_configs=udtf_configs, fetch_size=100000, predicates=[ "ID < 3", "ID >= 3" ] ) return df $$; CALL sp_pg_dbapi();
Use the DB-API to connect to PostgreSQL from a Snowflake notebook¶
From Snowflake Notebook packages, select
snowflake-snowpark-pythonandpsycopg2.Configure an external access integration (EAI), which is required to allow Snowflake to connect to the source endpoint.
참고
PrivateLink is recommended for secure data transfer, especially when you’re dealing with sensitive information. Ensure that your Snowflake account has the necessary PrivateLink privileges enabled and that the PrivateLink feature is configured and active in your Snowflake Notebook environment.
Configure the secret, a network rule to allow egress to the source endpoint, and EAI:
-- Configure the secret CREATE OR REPLACE SECRET pg_secret TYPE = PASSWORD USERNAME = 'pg_username' PASSWORD = 'pg_password'; ALTER NOTEBOOK pg_notebook SET SECRETS = ('snowflake-secret-object' = pg_secret); -- Configure the network rule to allow egress to the source endpoint CREATE OR REPLACE NETWORK RULE pg_network_rule MODE = EGRESS TYPE = HOST_PORT VALUE_LIST = ('pg_host:pg_port'); -- Configure external access integration CREATE OR REPLACE EXTERNAL ACCESS INTEGRATION pg_access_integration ALLOWED_NETWORK_RULES = (pg_network_rule) ALLOWED_AUTHENTICATION_SECRETS = (pg_secret) ENABLED = true;
Snowflake Notebooks 에 대한 외부 액세스 설정, and then restart the notebook session.
Use the DB-API to pull data from PostgreSQL in a Python cell of a Snowflake notebook:
# Get the user name and password from :code:`pg_secret` import _snowflake username_password_object = _snowflake.get_username_password('snowflake-secret-object') USER = username_password_object.username PASSWORD = username_password_object.password import snowflake.snowpark.context session = snowflake.snowpark.context.get_active_session() # Define the factory method for creating a connection to PostgreSQL def create_pg_connection(): import psycopg2 connection = psycopg2.connect( host="pg_host", port=pg_port, dbname="pg_dbname", user=USER, password=PASSWORD, # Optional: include this parameter for source tracing application_name="snowflake-snowpark-python" ) return connection # Feel free to combine local/udtf ingestion and partition column/predicates as # stated in the understanding parallelism section # Call dbapi to pull data from target table df = session.read.dbapi( create_pg_connection, table="target_table" ) # Call dbapi to pull data from target query df_query = session.read.dbapi( create_pg_connection, query="select * from target_table" ) # Pull data from target table with parallelism using partition column df_local_par_column = session.read.dbapi( create_pg_connection, table="target_table", fetch_size=100000, num_partitions=4, column="ID", # swap with the column you want your partition based on upper_bound=10000, lower_bound=0 ) udtf_configs = { "external_access_integration": "<your external access integration>" } # Pull data from target table with udtf ingestion with parallelism using predicates df_udtf_predicates = session.read.dbapi( create_pg_connection, table="target_table", udtf_configs=udtf_configs, fetch_size=100000, predicates=[ "ID < 3", "ID >= 3" ] ) # Save data into sf_table df.write.mode("overwrite").save_as_table('sf_table') # Get the user name and password from :code:`pg_secret`
Source tracing when using the DB-API to connect to PostgreSQL¶
create connection 함수에 Snowpark의 태그를 포함합니다.
def create_pg_connection(): import psycopg2 connection = psycopg2.connect( host="pg_host", port=pg_port, dbname="pg_dbname", user="pg_user", password="pg_password", # Include this parameter for source tracing application_name="snowflake-snowpark-python" ) return connection
데이터 소스에서 다음 SQL을 실행하여 Snowpark에서 여전히 라이브 상태인 쿼리를 캡처합니다.
SELECT pid, usename AS username, datname AS database, application_name, client_addr, state, query_start, query FROM pg_stat_activity WHERE application_name = 'snowflake-snowpark-python';
MySQL¶
To connect to MySQL from Snowpark, you need the following two packages:
Snowpark: `snowflake-snowpark-python[pandas]<https://pypi.org/project/snowflake-snowpark-python/>`_
오픈 소스 pymysql 라이브러리: `PyMySQL<https://pypi.org/project/PyMySQL/>`_
The following code examples show how to connect to MySQL from a Snowpark client, stored procedures, and a Snowflake notebook.
Use the DB-API to connect to MySQL from a Snowpark client¶
Install pymysql:
pip install snowflake-snowpark-python[pandas] pip install pymysql
Define the factory method for creating a connection to MySQL:
def create_mysql_connection(): import pymysql connection = pymysql.connect( host="mysql_host", port=mysql_port, database="mysql_db", user="mysql_user", password="mysql_password", # Optional: include this parameter for source tracing init_command="SET @program_name='snowflake-snowpark-python';" ) return connection # Feel free to combine local/udtf ingestion and partition column/predicates as # stated in the understanding parallelism section # Call dbapi to pull data from target table df = session.read.dbapi( create_mysql_connection, table="target_table" ) # Call dbapi to pull data from target query df_query = session.read.dbapi( create_mysql_connection, query="select * from target_table" ) # Pull data from target table with parallelism using partition column df_local_par_column = session.read.dbapi( create_mysql_connection, table="target_table", fetch_size=100000, num_partitions=4, column="ID", # swap with the column you want your partition based on upper_bound=10000, lower_bound=0 ) udtf_configs = { "external_access_integration": "<your external access integration>" } # Pull data from target table with udtf ingestion with parallelism using predicates df_udtf_predicates = session.read.dbapi( create_mysql_connection, table="target_table", udtf_configs=udtf_configs, fetch_size=100000, predicates=[ "ID < 3", "ID >= 3" ] )
Use the DB-API to connect to MySQL from a stored procedure¶
Configure an external access integration (EAI), which is required to allow Snowflake to connect to the source endpoint.
참고
PrivateLink is recommended for secure data transfer, especially when you’re dealing with sensitive information. Ensure that your Snowflake account has the necessary PrivateLink privileges enabled and that the PrivateLink feature is configured and active in your Snowflake Notebook environment.
Configure the secret, a network rule to allow egress to the source endpoint, and EAI:
CREATE OR REPLACE SECRET mysql_secret TYPE = PASSWORD USERNAME = 'mysql_username' PASSWORD = 'mysql_password'; -- configure a network rule. CREATE OR REPLACE NETWORK RULE mysql_network_rule MODE = EGRESS TYPE = HOST_PORT VALUE_LIST = ('mysql_host:mysql_port'); -- configure an external access integration CREATE OR REPLACE EXTERNAL ACCESS INTEGRATION mysql_access_integration ALLOWED_NETWORK_RULES = (mysql_network_rule) ALLOWED_AUTHENTICATION_SECRETS = (mysql_secret) ENABLED = true;
Use the Snowpark Python DB-API to pull data from MySQL in a Python stored procedure:
CREATE OR REPLACE PROCEDURE sp_mysql_dbapi() RETURNS TABLE() LANGUAGE PYTHON RUNTIME_VERSION='3.11' HANDLER='run' PACKAGES=('snowflake-snowpark-python', 'pymysql') EXTERNAL_ACCESS_INTEGRATIONS = (mysql_access_integration) SECRETS = ('cred' = mysql_secret ) AS $$ # Get user name and password from mysql_secret import _snowflake username_password_object = _snowflake.get_username_password('cred') USER = username_password_object.username PASSWORD = username_password_object.password # Define the factory method for creating a connection to MySQL from snowflake.snowpark import session def create_mysql_connection(): import pymysql connection = pymysql.connect( host="mysql_host", port=mysql_port, dbname="mysql_dbname", user=USER, password=PASSWORD, # Optional: include this parameter for source tracing init_command="SET @program_name='snowflake-snowpark-python';" ) return connection # Using Snowpark Python DB-API to pull data from MySQL in a Python stored procedure. def run(session: Session): # Feel free to combine local/udtf ingestion and partition column/predicates # as stated in the understanding parallelism section # Call dbapi to pull data from target table df = session.read.dbapi( create_mysql_connection, table="target_table" ) # Call dbapi to pull data from target query df_query = session.read.dbapi( create_mysql_connection, query="select * from target_table" ) # Pull data from target table with parallelism using partition column df_local_par_column = session.read.dbapi( create_mysql_connection, table="target_table", fetch_size=100000, num_partitions=4, column="ID", # swap with the column you want your partition based on upper_bound=10000, lower_bound=0 ) udtf_configs = { "external_access_integration": "<your external access integration>" } # Pull data from target table with udtf ingestion with parallelism using predicates df_udtf_predicates = session.read.dbapi( create_mysql_connection, table="target_table", udtf_configs=udtf_configs, fetch_size=100000, predicates=[ "ID < 3", "ID >= 3" ] ) return df $$; CALL sp_mysql_dbapi();
Use the DB-API to connect to MySQL from a Snowflake notebook¶
From Snowflake Notebook packages, select
snowflake-snowpark-pythonandpymysql.Configure an external access integration (EAI), which is required to allow Snowflake to connect to the source endpoint.
참고
PrivateLink is recommended for secure data transfer, especially when you’re dealing with sensitive information. Ensure that your Snowflake account has the necessary PrivateLink privileges enabled and that the PrivateLink feature is configured and active in your Snowflake Notebook environment.
Configure the secret, a network rule to allow egress to the source endpoint, and EAI:
CREATE OR REPLACE SECRET mysql_secret TYPE = PASSWORD USERNAME = 'mysql_username' PASSWORD = 'mysql_password'; ALTER NOTEBOOK mynotebook SET SECRETS = ('snowflake-secret-object' = mysql_secret); -- configure a network rule. CREATE OR REPLACE NETWORK RULE mysql_network_rule MODE = EGRESS TYPE = HOST_PORT VALUE_LIST = ('mysql_host:mysql_port'); -- configure an EAI CREATE OR REPLACE EXTERNAL ACCESS INTEGRATION mysql_access_integration ALLOWED_NETWORK_RULES = (mysql_network_rule) ALLOWED_AUTHENTICATION_SECRETS = (mysql_secret) ENABLED = true;
Snowflake Notebooks 에 대한 외부 액세스 설정, and then restart the notebook session.
Use the DB-API to pull data from MySQL in a Python cell of a Snowflake notebook:
# Get user name and password from mysql_secret import _snowflake username_password_object = _snowflake.get_username_password('snowflake-secret-object') USER = username_password_object.username PASSWORD = username_password_object.password import snowflake.snowpark.context session = snowflake.snowpark.context.get_active_session() # Define the factory method for creating a connection to MySQL def create_mysql_connection(): import pymysql connection = pymysql.connect( host="mysql_host", port=mysql_port, dbname="mysql_dbname", user=USER, password=PASSWORD, # Optional: include this parameter for source tracing init_command="SET @program_name='snowflake-snowpark-python';" ) return connection # Feel free to combine local/udtf ingestion and partition column/predicates as # stated in the understanding parallelism section # Call dbapi to pull data from target table df = session.read.dbapi( create_mysql_connection, table="target_table" ) # Call dbapi to pull data from target query df_query = session.read.dbapi( create_mysql_connection, query="select * from target_table" ) # Pull data from target table with parallelism using partition column df_local_par_column = session.read.dbapi( create_mysql_connection, table="target_table", fetch_size=100000, num_partitions=4, column="ID", # swap with the column you want your partition based on upper_bound=10000, lower_bound=0 ) udtf_configs = { "external_access_integration": "<your external access integration>" } # Pull data from target table with udtf ingestion with parallelism using predicates df_udtf_predicates = session.read.dbapi( create_mysql_connection, table="target_table", udtf_configs=udtf_configs, fetch_size=100000, predicates=[ "ID < 3", "ID >= 3" ] ) # Save data into sf_table df.write.mode("overwrite").save_as_table('sf_table')
Source tracing when using the DB-API to connect to MySQL¶
create connection 함수에 Snowpark의 태그를 포함합니다.
def create_mysql_connection(): import pymysql connection = pymysql.connect( host="mysql_host", port=mysql_port, database="mysql_db", user="mysql_user", password="mysql_password", # include this parameter for source tracing init_command="SET @program_name='snowflake-snowpark-python';" ) return connection
데이터 소스에서 다음 SQL을 실행하여 Snowpark에서 쿼리를 캡처합니다.
SELECT * FROM performance_schema.events_statements_history_long WHERE THREAD_ID = ( SELECT THREAD_ID FROM performance_schema.events_statements_history_long WHERE SQL_TEXT = "SET @program_name='snowflake-snowpark-python'" ORDER BY EVENT_ID DESC LIMIT 1 )
Databricks¶
To connect to Databricks from Snowpark, you need the following two packages:
Snowpark: `snowflake-snowpark-python[pandas]<https://pypi.org/project/snowflake-snowpark-python/>`_
오픈 소스 psycopg2 라이브러리: `databricks-sql-connector<https://pypi.org/project/databricks-sql-connector/>`_
The following code examples show how to connect to Databricks from a Snowpark client, stored procedures, and a Snowflake notebook.
Use the DB-API to connect to Databricks from a Snowpark client¶
Install databricks-sql-connector:
pip install snowflake-snowpark-python[pandas] pip install databricks-sql-connector
Define the factory method for creating a connection to Databricks:
def create_dbx_connection(): import databricks.sql connection = databricks.sql.connect( server_hostname=HOST, http_path=PATH, access_token=ACCESS_TOKEN ) return connection # Feel free to combine local/udtf ingestion and partition column/predicates as # stated in the understanding parallelism section # Call dbapi to pull data from target table df = session.read.dbapi( create_dbx_connection, table="target_table" ) # Call dbapi to pull data from target query df_query = session.read.dbapi( create_dbx_connection, query="select * from target_table" ) # Pull data from target table with parallelism using partition column df_local_par_column = session.read.dbapi( create_dbx_connection, table="target_table", fetch_size=100000, num_partitions=4, column="ID", # swap with the column you want your partition based on upper_bound=10000, lower_bound=0 ) udtf_configs = { "external_access_integration": "<your external access integration>" } # Pull data from target table with udtf ingestion with parallelism using predicates df_udtf_predicates = session.read.dbapi( create_dbx_connection, table="target_table", udtf_configs=udtf_configs, fetch_size=100000, predicates=[ "ID < 3", "ID >= 3" ] )
Use the DB-API to connect to Databricks from a stored procedure¶
Configure an external access integration (EAI), which is required to allow Snowflake to connect to the source endpoint.
참고
PrivateLink is recommended for secure data transfer, especially when you’re dealing with sensitive information. Ensure that your Snowflake account has the necessary PrivateLink privileges enabled and that the PrivateLink feature is configured and active in your Snowflake Notebook environment.
Configure the secret, a network rule to allow egress to the source endpoint, and EAI:
CREATE OR REPLACE SECRET dbx_secret TYPE = GENERIC_STRING SECRET_STRING = 'dbx_access_token'; CREATE OR REPLACE NETWORK RULE dbx_network_rule MODE = EGRESS TYPE = HOST_PORT VALUE_LIST = ('dbx_host:dbx_port'); CREATE OR REPLACE EXTERNAL ACCESS INTEGRATION dbx_access_integration ALLOWED_NETWORK_RULES = (dbx_network_rule) ALLOWED_AUTHENTICATION_SECRETS = (dbx_secret) ENABLED = true;
Use the Snowpark Python DB-API to pull data from Databricks in a Python stored procedure:
CREATE OR REPLACE PROCEDURE sp_dbx_dbapi() RETURNS TABLE() LANGUAGE PYTHON RUNTIME_VERSION='3.11' HANDLER='run' PACKAGES=('snowflake-snowpark-python', 'databricks-sql-connector') EXTERNAL_ACCESS_INTEGRATIONS = (dbx_access_integration) SECRETS = ('cred' = dbx_secret ) AS $$ # Get user name and password from dbx_secret import _snowflake ACCESS_TOKEN = _snowflake.get_generic_secret_string('cred') from snowflake.snowpark import Session # Define the method for creating a connection to Databricks def create_dbx_connection(): import databricks.sql connection = databricks.sql.connect( server_hostname="dbx_host", http_path="dbx_path", access_token=ACCESS_TOKEN, ) return connection # Using Snowpark Python DB-API to pull data from DataBricks in a Python stored procedure. def run(session: Session): # Feel free to combine local/udtf ingestion and partition column/predicates # as stated in the understanding parallelism section # Call dbapi to pull data from target table df = session.read.dbapi( create_dbx_connection, table="target_table" ) # Call dbapi to pull data from target query df_query = session.read.dbapi( create_dbx_connection, query="select * from target_table" ) # Pull data from target table with parallelism using partition column df_local_par_column = session.read.dbapi( create_dbx_connection, table="target_table", fetch_size=100000, num_partitions=4, column="ID", # swap with the column you want your partition based on upper_bound=10000, lower_bound=0 ) udtf_configs = { "external_access_integration": "<your external access integration>" } # Pull data from target table with udtf ingestion with parallelism using predicates df_udtf_predicates = session.read.dbapi( create_dbx_connection, table="target_table", udtf_configs=udtf_configs, fetch_size=100000, predicates=[ "ID < 3", "ID >= 3" ] ) return df $$; CALL sp_dbx_dbapi();
Use the DB-API to connect to Databricks from a Snowflake notebook¶
Snowflake Notebook 패키지</user-guide/ui-snowsight/notebooks-import-packages>`에서 :code:`snowflake-snowpark-python 및 :code:`databricks-sql-connector`를 선택합니다.
Configure an external access integration (EAI), which is required to allow Snowflake to connect to the source endpoint.
참고
PrivateLink is recommended for secure data transfer, especially when you’re dealing with sensitive information. Ensure that your Snowflake account has the necessary PrivateLink privileges enabled and that the PrivateLink feature is configured and active in your Snowflake Notebook environment.
Configure the secret, a network rule to allow egress to the source endpoint, and EAI:
CREATE OR REPLACE SECRET dbx_secret TYPE = GENERIC_STRING SECRET_STRING = 'dbx_access_token'; ALTER NOTEBOOK mynotebook SET SECRETS = ('snowflake-secret-object' = dbx_secret); CREATE OR REPLACE NETWORK RULE dbx_network_rule MODE = EGRESS TYPE = HOST_PORT VALUE_LIST = ('dbx_host:dbx_port'); CREATE OR REPLACE EXTERNAL ACCESS INTEGRATION dbx_access_integration ALLOWED_NETWORK_RULES = (dbx_network_rule) ALLOWED_AUTHENTICATION_SECRETS = (dbx_secret) ENABLED = true;
Snowflake Notebooks 에 대한 외부 액세스 설정, and then restart the notebook session.
Use the DB-API to pull data from Databricks in a Python cell of a Snowflake notebook:
# Get user name and password from dbx_secret import _snowflake ACCESS_TOKEN = _snowflake.get_generic_secret_string('cred') import snowflake.snowpark.context session = snowflake.snowpark.context.get_active_session() # Define the factory method for creating a connection to Databricks def create_dbx_connection(): import databricks.sql connection = databricks.sql.connect( server_hostname="dbx_host", http_path="dbx_path", access_token=ACCESS_TOKEN, ) return connection # Feel free to combine local/udtf ingestion and partition column/predicates as # stated in the understanding parallelism section # Call dbapi to pull data from target table df = session.read.dbapi( create_dbx_connection, table="target_table" ) # Call dbapi to pull data from target query df_query = session.read.dbapi( create_dbx_connection, query="select * from target_table" ) # Pull data from target table with parallelism using partition column df_local_par_column = session.read.dbapi( create_dbx_connection, table="target_table", fetch_size=100000, num_partitions=4, column="ID", # swap with the column you want your partition based on upper_bound=10000, lower_bound=0 ) udtf_configs = { "external_access_integration": "<your external access integration>" } # Pull data from target table with udtf ingestion with parallelism using predicates df_udtf_predicates = session.read.dbapi( create_dbx_connection, table="target_table", udtf_configs=udtf_configs, fetch_size=100000, predicates=[ "ID < 3", "ID >= 3" ] ) # Save data into sf_table df.write.mode("overwrite").save_as_table('sf_table')
Source tracing when using the DB-API to connect to Databricks¶
create connection 함수에 Snowpark의 태그를 포함합니다.
def create_dbx_connection(): import databricks.sql connection = databricks.sql.connect( server_hostname=HOST, http_path=PATH, access_token=ACCESS_TOKEN, # include this parameter for source tracing user_agent_entry="snowflake-snowpark-python" ) return connection
DataBricks 콘솔의 쿼리 기록으로 이동하고 소스가 :code:`snowflake-snowpark-python`인 쿼리를 검색합니다.
제한 사항¶
The Snowpark Python DB-API supports only Python DB-API 2.0–compliant drivers (for example, pyodbc or oracledb). JDBC drivers are not supported in this release.