snowflake.ml.modeling.metrics.confusion_matrix¶
- snowflake.ml.modeling.metrics.confusion_matrix(*, df: DataFrame, y_true_col_name: str, y_pred_col_name: str, labels: Optional[Union[_SupportsArray[dtype[Any]], _NestedSequence[_SupportsArray[dtype[Any]]], bool, int, float, complex, str, bytes, _NestedSequence[Union[bool, int, float, complex, str, bytes]]]] = None, sample_weight_col_name: Optional[str] = None, normalize: Optional[str] = None) Union[ndarray[Any, dtype[int64]], ndarray[Any, dtype[float64]]]¶
- Compute confusion matrix to evaluate the accuracy of a classification. - By definition a confusion matrix - is such that - is equal to the number of observations known to be in group - and predicted to be in group - . - Thus in binary classification, the count of true negatives is - , false negatives is - , true positives is - and false positives is - . - Parameters:
- df – snowpark.DataFrame Input dataframe. 
- y_true_col_name – string or list of strings Column name representing actual values. 
- y_pred_col_name – string or list of strings Column name representing predicted values. 
- labels – list of labels, default=None List of labels to index the matrix. This may be used to reorder or select a subset of labels. If - Noneis given, those that appear at least once in the y true or y pred column are used in sorted order.
- sample_weight_col_name – string, default=None Column name representing sample weights. 
- normalize – {‘true’, ‘pred’, ‘all’}, default=None Normalizes confusion matrix over the true (rows), predicted (columns) conditions or all the population. If None, confusion matrix will not be normalized. 
 
- Returns:
- ndarray of shape (n_classes, n_classes)
- Confusion matrix whose i-th row and j-th column entry indicates the number of samples with true label being i-th class and predicted label being j-th class. 
 
- Return type:
- C 
- Raises:
- ValueError – The given - labelsis empty.
- ValueError – No label specified in the given - labelsis in the y true column.
- ValueError – - normalizeis not one of {‘true’, ‘pred’, ‘all’, None}.