snowflake.ml.modeling.metrics.mean_absolute_error¶
- snowflake.ml.modeling.metrics.mean_absolute_error(*, df: DataFrame, y_true_col_names: Union[str, list[str]], y_pred_col_names: Union[str, list[str]], sample_weight_col_name: Optional[str] = None, multioutput: Union[str, _SupportsArray[dtype[Any]], _NestedSequence[_SupportsArray[dtype[Any]]], bool, int, float, complex, bytes, _NestedSequence[Union[bool, int, float, complex, str, bytes]]] = 'uniform_average') Union[float, ndarray[Any, dtype[float64]]]¶
- Mean absolute error regression loss. - Parameters:
- df – snowpark.DataFrame Input dataframe. 
- y_true_col_names – string or list of strings Column name(s) representing actual values. 
- y_pred_col_names – string or list of strings Column name(s) representing predicted values. 
- sample_weight_col_name – string, default=None Column name representing sample weights. 
- multioutput – - {‘raw_values’, ‘uniform_average’} or array-like of shape (n_outputs,), default=’uniform_average’ Defines aggregating of multiple output values. Array-like value defines weights used to average errors. ‘raw_values’: - Returns a full set of errors in case of multioutput input. - ’uniform_average’:
- Errors of all outputs are averaged with uniform weight. 
 
 
- Returns:
- float or ndarray of floats
- If multioutput is ‘raw_values’, then mean absolute error is returned for each output separately. If multioutput is ‘uniform_average’ or an ndarray of weights, then the weighted average of all output errors is returned. - MAE output is non-negative floating point. The best value is 0.0. 
 
- Return type:
- loss