snowflake.ml.model.custom_model.partitioned_api¶
- snowflake.ml.model.custom_model.partitioned_api(func: Callable[[Concatenate[CustomModelType, DataFrame, InferenceParams]], DataFrame]) Callable[[Concatenate[CustomModelType, DataFrame, InferenceParams]], DataFrame]¶
Decorator to mark a method as a partitioned inference API in a CustomModel.
Methods decorated with
@partitioned_apiare exposed as partitioned inference endpoints, enabling efficient batch processing where the model processes data partitions independently. This is useful for models that can benefit from parallel execution across data partitions.The decorated method must accept a pandas DataFrame as its first argument (after self) and return a pandas DataFrame.
- Parameters:
func – The method to decorate.
- Returns:
The decorated function with partitioned API metadata.
Example:
class MyPartitionedModel(CustomModel): @partitioned_api def predict(self, input_df: pd.DataFrame) -> pd.DataFrame: # Process each partition independently return pd.DataFrame({"output": input_df["feature"] * 2})