snowflake.ml.modeling.decomposition.MiniBatchSparsePCA¶

class snowflake.ml.modeling.decomposition.MiniBatchSparsePCA(*, n_components=None, alpha=1, ridge_alpha=0.01, n_iter='deprecated', max_iter=None, callback=None, batch_size=3, verbose=False, shuffle=True, n_jobs=None, method='lars', random_state=None, tol=0.001, max_no_improvement=10, input_cols: Optional[Union[str, Iterable[str]]] = None, output_cols: Optional[Union[str, Iterable[str]]] = None, label_cols: Optional[Union[str, Iterable[str]]] = None, passthrough_cols: Optional[Union[str, Iterable[str]]] = None, drop_input_cols: Optional[bool] = False, sample_weight_col: Optional[str] = None)¶

Bases: BaseTransformer

Mini-batch Sparse Principal Components Analysis For more details on this class, see sklearn.decomposition.MiniBatchSparsePCA

Parameters:
  • input_cols (Optional[Union[str, List[str]]]) – A string or list of strings representing column names that contain features. If this parameter is not specified, all columns in the input DataFrame except the columns specified by label_cols, sample_weight_col, and passthrough_cols parameters are considered input columns. Input columns can also be set after initialization with the set_input_cols method.

  • label_cols (Optional[Union[str, List[str]]]) – A string or list of strings representing column names that contain labels. Label columns must be specified with this parameter during initialization or with the set_label_cols method before fitting.

  • output_cols (Optional[Union[str, List[str]]]) – A string or list of strings representing column names that will store the output of predict and transform operations. The length of output_cols must match the expected number of output columns from the specific predictor or transformer class used. If you omit this parameter, output column names are derived by adding an OUTPUT_ prefix to the label column names for supervised estimators, or OUTPUT_<IDX>for unsupervised estimators. These inferred output column names work for predictors, but output_cols must be set explicitly for transformers. In general, explicitly specifying output column names is clearer, especially if you don’t specify the input column names. To transform in place, pass the same names for input_cols and output_cols. be set explicitly for transformers. Output columns can also be set after initialization with the set_output_cols method.

  • sample_weight_col (Optional[str]) – A string representing the column name containing the sample weights. This argument is only required when working with weighted datasets. Sample weight column can also be set after initialization with the set_sample_weight_col method.

  • passthrough_cols (Optional[Union[str, List[str]]]) – A string or a list of strings indicating column names to be excluded from any operations (such as train, transform, or inference). These specified column(s) will remain untouched throughout the process. This option is helpful in scenarios requiring automatic input_cols inference, but need to avoid using specific columns, like index columns, during training or inference. Passthrough columns can also be set after initialization with the set_passthrough_cols method.

  • drop_input_cols (Optional[bool], default=False) – If set, the response of predict(), transform() methods will not contain input columns.

  • n_components (int, default=None) – Number of sparse atoms to extract. If None, then n_components is set to n_features.

  • alpha (int, default=1) – Sparsity controlling parameter. Higher values lead to sparser components.

  • ridge_alpha (float, default=0.01) – Amount of ridge shrinkage to apply in order to improve conditioning when calling the transform method.

  • n_iter (int, default=100) – Number of iterations to perform for each mini batch.

  • max_iter (int, default=None) – Maximum number of iterations over the complete dataset before stopping independently of any early stopping criterion heuristics. If max_iter is not None, n_iter is ignored.

  • callback (callable, default=None) – Callable that gets invoked every five iterations.

  • batch_size (int, default=3) – The number of features to take in each mini batch.

  • verbose (int or bool, default=False) – Controls the verbosity; the higher, the more messages. Defaults to 0.

  • shuffle (bool, default=True) – Whether to shuffle the data before splitting it in batches.

  • n_jobs (int, default=None) – Number of parallel jobs to run. None means 1 unless in a joblib.parallel_backend context. -1 means using all processors. See Glossary for more details.

  • method ({'lars', 'cd'}, default='lars') – Method to be used for optimization. lars: uses the least angle regression method to solve the lasso problem (linear_model.lars_path) cd: uses the coordinate descent method to compute the Lasso solution (linear_model.Lasso). Lars will be faster if the estimated components are sparse.

  • random_state (int, RandomState instance or None, default=None) – Used for random shuffling when shuffle is set to True, during online dictionary learning. Pass an int for reproducible results across multiple function calls. See Glossary.

  • tol (float, default=1e-3) –

    Control early stopping based on the norm of the differences in the dictionary between 2 steps. Used only if max_iter is not None.

    To disable early stopping based on changes in the dictionary, set tol to 0.0.

  • max_no_improvement (int or None, default=10) –

    Control early stopping based on the consecutive number of mini batches that does not yield an improvement on the smoothed cost function. Used only if max_iter is not None.

    To disable convergence detection based on cost function, set max_no_improvement to None.

Base class for all transformers.

Methods

fit(dataset: Union[DataFrame, DataFrame]) → BaseEstimator¶

Runs universal logics for all fit implementations.

fit_transform(dataset: Union[DataFrame, DataFrame], output_cols_prefix: str = 'fit_transform_') → Union[DataFrame, DataFrame]¶

Fit to data, then transform it For more details on this function, see sklearn.decomposition.MiniBatchSparsePCA.fit_transform

Raises:

TypeError – Supported dataset types: snowpark.DataFrame, pandas.DataFrame.

Parameters:

dataset – Union[snowflake.snowpark.DataFrame, pandas.DataFrame] Snowpark or Pandas DataFrame.

output_cols_prefix: Prefix for the response columns :returns: Transformed dataset.

get_input_cols() → List[str]¶

Input columns getter.

Returns:

Input columns.

get_label_cols() → List[str]¶

Label column getter.

Returns:

Label column(s).

get_output_cols() → List[str]¶

Output columns getter.

Returns:

Output columns.

get_params(deep: bool = True) → Dict[str, Any]¶

Get the snowflake-ml parameters for this transformer.

Parameters:

deep – If True, will return the parameters for this transformer and contained subobjects that are transformers.

Returns:

Parameter names mapped to their values.

get_passthrough_cols() → List[str]¶

Passthrough columns getter.

Returns:

Passthrough column(s).

get_sample_weight_col() → Optional[str]¶

Sample weight column getter.

Returns:

Sample weight column.

get_sklearn_args(default_sklearn_obj: Optional[object] = None, sklearn_initial_keywords: Optional[Union[str, Iterable[str]]] = None, sklearn_unused_keywords: Optional[Union[str, Iterable[str]]] = None, snowml_only_keywords: Optional[Union[str, Iterable[str]]] = None, sklearn_added_keyword_to_version_dict: Optional[Dict[str, str]] = None, sklearn_added_kwarg_value_to_version_dict: Optional[Dict[str, Dict[str, str]]] = None, sklearn_deprecated_keyword_to_version_dict: Optional[Dict[str, str]] = None, sklearn_removed_keyword_to_version_dict: Optional[Dict[str, str]] = None) → Dict[str, Any]¶

Get sklearn keyword arguments.

This method enables modifying object parameters for special cases.

Parameters:
  • default_sklearn_obj – Sklearn object used to get default parameter values. Necessary when sklearn_added_keyword_to_version_dict is provided.

  • sklearn_initial_keywords – Initial keywords in sklearn.

  • sklearn_unused_keywords – Sklearn keywords that are unused in snowml.

  • snowml_only_keywords – snowml only keywords not present in sklearn.

  • sklearn_added_keyword_to_version_dict – Added keywords mapped to the sklearn versions in which they were added.

  • sklearn_added_kwarg_value_to_version_dict – Added keyword argument values mapped to the sklearn versions in which they were added.

  • sklearn_deprecated_keyword_to_version_dict – Deprecated keywords mapped to the sklearn versions in which they were deprecated.

  • sklearn_removed_keyword_to_version_dict – Removed keywords mapped to the sklearn versions in which they were removed.

Returns:

Sklearn parameter names mapped to their values.

score_samples(dataset: Union[DataFrame, DataFrame], output_cols_prefix: str = 'score_samples_') → Union[DataFrame, DataFrame]¶

Method not supported for this class.

Raises:

TypeError – Supported dataset types: snowpark.DataFrame, pandas.DataFrame.

Parameters:
  • dataset – Union[snowflake.snowpark.DataFrame, pandas.DataFrame] Snowpark or Pandas DataFrame.

  • output_cols_prefix – Prefix for the response columns

Returns:

Output dataset with probability of the sample for each class in the model.

set_drop_input_cols(drop_input_cols: Optional[bool] = False) → None¶
set_input_cols(input_cols: Optional[Union[str, Iterable[str]]]) → MiniBatchSparsePCA¶

Input columns setter.

Parameters:

input_cols – A single input column or multiple input columns.

Returns:

self

set_label_cols(label_cols: Optional[Union[str, Iterable[str]]]) → Base¶

Label column setter.

Parameters:

label_cols – A single label column or multiple label columns if multi task learning.

Returns:

self

set_output_cols(output_cols: Optional[Union[str, Iterable[str]]]) → Base¶

Output columns setter.

Parameters:

output_cols – A single output column or multiple output columns.

Returns:

self

set_params(**params: Any) → None¶

Set the parameters of this transformer.

The method works on simple transformers as well as on sklearn compatible pipelines with nested objects, once the transformer has been fit. Nested objects have parameters of the form <component>__<parameter> so that it’s possible to update each component of a nested object.

Parameters:

**params – Transformer parameter names mapped to their values.

Raises:

SnowflakeMLException – Invalid parameter keys.

set_passthrough_cols(passthrough_cols: Optional[Union[str, Iterable[str]]]) → Base¶

Passthrough columns setter.

Parameters:

passthrough_cols – Column(s) that should not be used or modified by the estimator/transformer. Estimator/Transformer just passthrough these columns without any modifications.

Returns:

self

set_sample_weight_col(sample_weight_col: Optional[str]) → Base¶

Sample weight column setter.

Parameters:

sample_weight_col – A single column that represents sample weight.

Returns:

self

to_sklearn() → Any¶

Get sklearn.decomposition.MiniBatchSparsePCA object.

transform(dataset: Union[DataFrame, DataFrame]) → Union[DataFrame, DataFrame]¶

Least Squares projection of the data onto the sparse components For more details on this function, see sklearn.decomposition.MiniBatchSparsePCA.transform

Raises:

TypeError – Supported dataset types: snowpark.DataFrame, pandas.DataFrame.

Parameters:

dataset – Union[snowflake.snowpark.DataFrame, pandas.DataFrame] Snowpark or Pandas DataFrame.

Returns:

Transformed dataset.

Attributes

model_signatures¶

Returns model signature of current class.

Raises:

SnowflakeMLException – If estimator is not fitted, then model signature cannot be inferred

Returns:

Dict with each method and its input output signature