snowflake.ml.modeling.metrics.explained_variance_score¶
- snowflake.ml.modeling.metrics.explained_variance_score(*, df: DataFrame, y_true_col_names: Union[str, list[str]], y_pred_col_names: Union[str, list[str]], sample_weight_col_name: Optional[str] = None, multioutput: Union[str, _SupportsArray[dtype[Any]], _NestedSequence[_SupportsArray[dtype[Any]]], bool, int, float, complex, bytes, _NestedSequence[Union[bool, int, float, complex, str, bytes]]] = 'uniform_average', force_finite: bool = True) Union[float, ndarray[Any, dtype[float64]]]¶
- Explained variance regression score function. - Best possible score is 1.0, lower values are worse. - In the particular case when - y_trueis constant, the explained variance score is not finite: it is either- NaN(perfect predictions) or- -Inf(imperfect predictions). To prevent such non-finite numbers to pollute higher-level experiments such as a grid search cross-validation, by default these cases are replaced with 1.0 (perfect predictions) or 0.0 (imperfect predictions) respectively. If- force_finiteis set to- False, this score falls back on the original- definition. - Note - The Explained Variance score is similar to the - R^2 score, with the notable difference that it does not account for systematic offsets in the prediction. Most often the- R^2 scoreshould be preferred.- Parameters:
- df – snowpark.DataFrame Input dataframe. 
- y_true_col_names – string or list of strings Column name(s) representing actual values. 
- y_pred_col_names – string or list of strings Column name(s) representing predicted values. 
- sample_weight_col_name – string, default=None Column name representing sample weights. 
- multioutput – - {‘raw_values’, ‘uniform_average’, ‘variance_weighted’} or array-like of shape (n_outputs,), default=’uniform_average’ Defines aggregating of multiple output values. Array-like value defines weights used to average errors. ‘raw_values’: - Returns a full set of scores in case of multioutput input. - ’uniform_average’:
- Scores of all outputs are averaged with uniform weight. 
- ’variance_weighted’:
- Scores of all outputs are averaged, weighted by the variances of each individual output. 
 
- force_finite – boolean, default=True Flag indicating if - NaNand- -Infscores resulting from constant data should be replaced with real numbers (- 1.0if prediction is perfect,- 0.0otherwise). Default is- True, a convenient setting for hyperparameters’ search procedures (e.g. grid search cross-validation).
 
- Returns:
- float or ndarray of floats
- The explained variance or ndarray if ‘multioutput’ is ‘raw_values’. 
 
- Return type:
- score