modin.pandas.date_range¶
- snowflake.snowpark.modin.pandas.general.date_range(start: VALID_DATE_TYPE | None = None, end: VALID_DATE_TYPE | None = None, periods: int | None = None, freq: str | pd.DateOffset | None = None, tz: str | tzinfo | None = None, normalize: bool = False, name: Hashable | None = None, inclusive: IntervalClosedType = 'both', **kwargs) pd.DatetimeIndex [source]¶
Return a fixed frequency DatetimeIndex.
Returns the range of equally spaced time points (where the difference between any two adjacent points is specified by the given frequency) such that they all satisfy start <[=] x <[=] end, where the first one and the last one are, resp., the first and last time points in that range that fall on the boundary of
freq
(if given as a frequency string) or that are valid forfreq
(if given as apandas.tseries.offsets.DateOffset
). (If exactly one ofstart
,end
, orfreq
is not specified, this missing parameter can be computed givenperiods
, the number of timesteps in the range. See the note below.)- Parameters:
start (str or datetime-like, optional) – Left bound for generating dates.
end (str or datetime-like, optional) – Right bound for generating dates.
periods (int, optional) – Number of periods to generate.
freq (str or DateOffset, default 'D') – Frequency strings can have multiples, e.g. ‘5H’.
tz (str or tzinfo, optional) – Time zone name for returning localized DatetimeIndex, for example ‘Asia/Hong_Kong’. By default, the resulting DatetimeIndex is timezone-naive.
normalize (bool, default False) – Normalize start/end dates to midnight before generating date range.
name (str, default None) – Name of the resulting DatetimeIndex.
inclusive ({"both", "neither", "left", "right"}, default "both") –
Include boundaries; Whether to set each bound as closed or open.
New in version 1.4.0.
**kwargs – For compatibility. Has no effect on the result.
- Returns:
rng
- Return type:
DatetimeIndex
See also
DatetimeIndex
An immutable container for datetimes.
timedelta_range
Return a fixed frequency TimedeltaIndex.
period_range
Return a fixed frequency PeriodIndex.
interval_range
Return a fixed frequency IntervalIndex.
Notes
tz
is not supported.Of the four parameters
start
,end
,periods
, andfreq
, exactly three must be specified. Iffreq
is omitted, the resultingDatetimeIndex
will haveperiods
linearly spaced elements betweenstart
andend
(closed on both sides).To learn more about the frequency strings, please see this link.
Also, custom or business frequencies are not implemented in Snowpark pandas, e.g., “B”, “C”, “SMS”, “BMS”, “CBMS”, “BQS”, “BYS”, “bh”, “cbh”.
Examples
Specifying the values
The next four examples generate the same DatetimeIndex, but vary the combination of start, end and periods.
Specify start and end, with the default daily frequency.
>>> pd.date_range(start='1/1/2018', end='1/08/2018') DatetimeIndex(['2018-01-01', '2018-01-02', '2018-01-03', '2018-01-04', '2018-01-05', '2018-01-06', '2018-01-07', '2018-01-08'], dtype='datetime64[ns]', freq=None)
Specify start and periods, the number of periods (days).
>>> pd.date_range(start='1/1/2018', periods=8) DatetimeIndex(['2018-01-01', '2018-01-02', '2018-01-03', '2018-01-04', '2018-01-05', '2018-01-06', '2018-01-07', '2018-01-08'], dtype='datetime64[ns]', freq=None)
Specify end and periods, the number of periods (days).
>>> pd.date_range(end='1/1/2018', periods=8) DatetimeIndex(['2017-12-25', '2017-12-26', '2017-12-27', '2017-12-28', '2017-12-29', '2017-12-30', '2017-12-31', '2018-01-01'], dtype='datetime64[ns]', freq=None)
Specify start, end, and periods; the frequency is generated automatically (linearly spaced).
>>> pd.date_range(start='2018-04-24', end='2018-04-27', periods=3) DatetimeIndex(['2018-04-24 00:00:00', '2018-04-25 12:00:00', '2018-04-27 00:00:00'], dtype='datetime64[ns]', freq=None)
Other Parameters
Changed the freq (frequency) to
'ME'
(month end frequency).>>> pd.date_range(start='1/1/2018', periods=5, freq='ME') DatetimeIndex(['2018-01-31', '2018-02-28', '2018-03-31', '2018-04-30', '2018-05-31'], dtype='datetime64[ns]', freq=None)
Multiples are allowed
>>> pd.date_range(start='1/1/2018', periods=5, freq='3ME') DatetimeIndex(['2018-01-31', '2018-04-30', '2018-07-31', '2018-10-31', '2019-01-31'], dtype='datetime64[ns]', freq=None)
freq can also be specified as an Offset object.
>>> pd.date_range(start='1/1/2018', periods=5, freq=pd.offsets.MonthEnd(3)) DatetimeIndex(['2018-01-31', '2018-04-30', '2018-07-31', '2018-10-31', '2019-01-31'], dtype='datetime64[ns]', freq=None)
inclusive controls whether to include start and end that are on the boundary. The default, “both”, includes boundary points on either end.
>>> pd.date_range(start='2017-01-01', end='2017-01-04', inclusive="both") DatetimeIndex(['2017-01-01', '2017-01-02', '2017-01-03', '2017-01-04'], dtype='datetime64[ns]', freq=None)
Use
inclusive='left'
to exclude end if it falls on the boundary.>>> pd.date_range(start='2017-01-01', end='2017-01-04', inclusive='left') DatetimeIndex(['2017-01-01', '2017-01-02', '2017-01-03'], dtype='datetime64[ns]', freq=None)
Use
inclusive='right'
to exclude start if it falls on the boundary, and similarlyinclusive='neither'
will exclude both start and end.>>> pd.date_range(start='2017-01-01', end='2017-01-04', inclusive='right') DatetimeIndex(['2017-01-02', '2017-01-03', '2017-01-04'], dtype='datetime64[ns]', freq=None)