XGBoost

O Snowflake ML Model Registry oferece suporte a modelos criados usando XGBoost (modelos derivados de xgboost.XGBModel ou xgboost.Booster).

As seguintes opções adicionais podem ser usadas no dicionário options quando você chamar log_model:

Opção

Descrição

target_methods

Uma lista dos nomes dos métodos disponíveis no objeto modelo. Os modelos derivados de XGBModel têm os seguintes métodos de destino por padrão, assumindo que o método existe: predict, predict_proba. (Antes da v1.4.0, apply também foi incluído.) Os modelos derivados de Booster possuem o método predict por padrão.

cuda_version

A versão do tempo de execução CUDA a ser usada ao implantar em uma plataforma com GPU; o padrão é 11.8. Se definido manualmente como None, o modelo não poderá ser implementado em uma plataforma com GPU.

Você deve especificar o parâmetro sample_input_data ou signatures ao registrar um modelo XGBoost para que o registro conheça as assinaturas dos métodos de destino.

Exemplo

import xgboost
from sklearn import datasets, model_selection

cal_X, cal_y = datasets.load_breast_cancer(as_frame=True, return_X_y=True)
cal_X_train, cal_X_test, cal_y_train, cal_y_test = model_selection.train_test_split(cal_X, cal_y)
params = dict(n_estimators=100, reg_lambda=1, gamma=0, max_depth=3, objective="binary:logistic")
regressor = xgboost.train(params, xgboost.DMatrix(data=cal_X_train, label=cal_y_train))
model_ref = registry.log_model(
    regressor,
    model_name="xgBooster",
    version_name="v1",
    sample_input_data=cal_X_test,
    options={
        "target_methods": ["predict"],
        "method_options": {
            "predict": {"case_sensitive": True},
        },
    },
)
model_ref.run(cal_X_test[-10:])
Copy