Creating User-Defined Functions (UDFs) for DataFrames in Java¶
The Snowpark API provides methods that you can use to create a user-defined function from a lambda expression in Java. This topic explains how to create these types of functions.
Introduction¶
You can call Snowpark APIs to create user-defined functions (UDFs) for lambda expressions in Java, and you can call these UDFs to process the data in your DataFrame.
When you use the Snowpark API to create a UDF, the Snowpark library serializes and uploads the code for your UDF to a stage. When you call the UDF, the Snowpark library executes your function on the server, where the data is located. As a result, the data doesn’t need to be transferred to the client in order for the function to process the data.
In your custom code, you can also call code that is packaged in JAR files (for example, Java classes for a third-party library).
You can create a UDF for your custom code in one of two ways:
You can create an anonymous UDF and assign the function to a variable. As long as this variable is in scope, you can use this variable to call the UDF.
import com.snowflake.snowpark_java.types.*; ... // Create and register an anonymous UDF (doubleUdf) // that takes in an integer argument and returns an integer value. UserDefinedFunction doubleUdf = Functions.udf((Integer x) -> x + x, DataTypes.IntegerType, DataTypes.IntegerType); // Call the anonymous UDF. DataFrame df = session.table("sample_product_data"); DataFrame dfWithDoubleQuantity = df.withColumn("doubleQuantity", doubleUdf.apply(Functions.col("quantity"))); dfWithDoubleQuantity.show();
You can create a named UDF and call the UDF by name. You can use this if, for example, you need to call a UDF by name or use the UDF in a subsequent session.
import com.snowflake.snowpark_java.types.*; ... // Create and register a permanent named UDF ("doubleUdf") // that takes in an integer argument and returns an integer value. UserDefinedFunction doubleUdf = session .udf() .registerPermanent( "doubleUdf", (Integer x) -> x + x, DataTypes.IntegerType, DataTypes.IntegerType, "mystage"); // Call the named UDF. DataFrame df = session.table("sample_product_data"); DataFrame dfWithDoubleQuantity = df.withColumn("doubleQuantity", Functions.callUDF("doubleUdf", Functions.col("quantity"))); dfWithDoubleQuantity.show();
The rest of this topic explains how to create UDFs.
Note
If you defined a UDF by running the CREATE FUNCTION
command, you can call that UDF in Snowpark.
For details, see Calling scalar user-defined functions (UDFs).
Data Types Supported for Arguments and Return Values¶
In order to create a UDF for a Java lambda, you must use the supported data types listed below for the arguments and return value of your method:
SQL Data Type |
Java Data Type |
Notes |
---|---|---|
The following types are supported:
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
Specifying Dependencies for a UDF¶
In order to define a UDF through the Snowpark API, you must call Session.addDependency()
for any files that contain any
classes and resources that your UDF depends on (e.g. JAR files, resource files, etc.). (For details on reading resources from a
UDF, see Reading Files from a UDF.)
The Snowpark library uploads these files to an internal stage and adds the files to the classpath when executing your UDF.
Tip
If you don’t want the library to upload the file every time you run your application, upload the file to a stage. When calling
addDependency
, pass the path to the file in the stage.
The following example demonstrates how to add a JAR file in a stage as a dependency:
// Add a JAR file that you uploaded to a stage.
session.addDependency("@my_stage/<path>/my-library.jar");
The following examples demonstrate how to add dependencies for JAR files and resource files:
// Add a JAR file on your local machine.
session.addDependency("/<path>/my-library.jar");
// Add a directory of resource files.
session.addDependency("/<path>/my-resource-dir/");
// Add a resource file.
session.addDependency("/<path>/my-resource.xml");
You should not need to specify the following dependencies:
Your Java runtime libraries.
These libraries are already available in the runtime environment on the server where your UDFs are executed.
The Snowpark JAR file.
The Snowpark library automatically attempts to detect and upload the Snowpark JAR file to the server.
To prevent the library from repeatedly uploading the Snowpark JAR file to the server:
Upload the Snowpark JAR file to a stage.
For example, the following command uploads the Snowpark JAR file to the stage
@mystage
. The PUT command compresses the JAR file and names the resulting file snowpark-1.14.0.jar.gz.-- Put the Snowpark JAR file in a stage. PUT file:///<path>/snowpark-1.14.0.jar @mystageCall
addDependency
to add the Snowpark JAR file in the stage as a dependency.For example, to add the Snowpark JAR file uploaded by the previous command:
// Add the Snowpark JAR file that you uploaded to a stage. session.addDependency("@mystage/snowpark-1.14.0.jar.gz");Note that the specified path to the JAR file includes the
.gz
filename extension, which was added by the PUT command.The JAR file or directory with the currently running application.
The Snowpark library automatically attempts to detect and upload these dependencies.
If the Snowpark library is unable to detect these dependencies automatically, the library reports an error, and you must call
addDependency
to add these dependencies manually.
If it takes too long for the dependencies to be uploaded to the stage, the Snowpark library reports a timeout exception. To configure the maximum amount of time that the Snowpark library should wait, set the snowpark_request_timeout_in_seconds property when creating the session.
Creating an Anonymous UDF¶
To create an anonymous UDF, you can either:
Call the
Functions.udf
static method, passing in the lambda expression and the DataTypes fields (or objects constructed by the methods of that class) representing the data types of the inputs and output.Call the
registerTemporary
method in theUDFRegistration
class, passing in the lambda expression and the DataTypes fields (or objects constructed by the methods of that class) representing the data types of the inputs and output.You can access an instance of the
UDFRegistration
class by calling theudf
method of theSession
object.When calling
registerTemporary
, use a method signature that does not have aname
parameter. (Because you are creating an anonymous UDF, you do not specify a name for the UDF.)
Note
When writing multi-threaded code (e.g. when using parallel collections), use the registerTemporary
method to register
UDFs, rather than using the udf
method. This can prevent errors in which the default Snowflake Session
object
cannot be found.
These methods return a UserDefinedFunction
object, which you can use to call the UDF. (See
Calling scalar user-defined functions (UDFs).)
The following example creates an anonymous UDF:
import com.snowflake.snowpark_java.types.*;
...
// Create and register an anonymous UDF
// that takes in an integer argument and returns an integer value.
UserDefinedFunction doubleUdf =
Functions.udf((Integer x) -> x + x, DataTypes.IntegerType, DataTypes.IntegerType);
// Call the anonymous UDF, passing in the "quantity" column.
// The example uses withColumn to return a DataFrame containing
// the UDF result in a new column named "doubleQuantity".
DataFrame df = session.table("sample_product_data");
DataFrame dfWithDoubleQuantity = df.withColumn("doubleQuantity", doubleUdf.apply(Functions.col("quantity")));
dfWithDoubleQuantity.show();
The following example creates an anonymous UDF that uses a custom class (LanguageDetector
, which detects the language used
in text). The example calls the anonymous UDF to detect the language in the text_data
column in a DataFrame and creates a new
DataFrame that includes an additional lang
column with the language used.
import com.snowflake.snowpark_java.types.*;
// Import the package for your custom code.
// The custom code in this example detects the language of textual data.
import com.mycompany.LanguageDetector;
// If the custom code is packaged in a JAR file, add that JAR file as
// a dependency.
session.addDependency("$HOME/language-detector.jar");
// Create a detector
LanguageDetector detector = new LanguageDetector();
// Create an anonymous UDF that takes a string of text and returns the language used in that string.
// Note that this captures the detector object created above.
// Assign the UDF to the langUdf variable, which will be used to call the UDF.
UserDefinedFunction langUdf =
Functions.udf(
(String s) -> Option(detector.detect(s)).getOrElse("UNKNOWN"),
DataTypes.StringType,
DataTypes.StringType);
// Create a new DataFrame that contains an additional "lang" column that contains the language
// detected by the UDF.
DataFrame dfEmailsWithLangCol =
dfEmails.withColumn("lang", langUdf(Functions.col("text_data")));
Creating and Registering a Named UDF¶
If you want to call a UDF by name (e.g. by using the Functions.callUDF
static method) or if you need to use a UDF in
subsequent sessions, you can create and register a named UDF. To do this, use one of the following methods in the
UDFRegistration
class:
registerTemporary
, if you just plan to use the UDF in the current sessionregisterPermanent
, if you plan to use the UDF in subsequent sessions
To access an object of the UDFRegistration
class, call the udf
method of the Session
object.
When calling registerTemporary
or registerPermanent
method, pass in the lambda expression and the DataTypes
fields (or objects constructed by the methods of that class) representing the data types of the inputs and output.
For example:
import com.snowflake.snowpark_java.types.*;
...
// Create and register a temporary named UDF
// that takes in an integer argument and returns an integer value.
UserDefinedFunction doubleUdf =
session
.udf()
.registerTemporary(
"doubleUdf",
(Integer x) -> x + x,
DataTypes.IntegerType,
DataTypes.IntegerType);
// Call the named UDF, passing in the "quantity" column.
// The example uses withColumn to return a DataFrame containing
// the UDF result in a new column named "doubleQuantity".
DataFrame df = session.table("sample_product_data");
DataFrame dfWithDoubleQuantity = df.withColumn("doubleQuantity", Functions.callUDF("doubleUdf", Functions.col("quantity")));
dfWithDoubleQuantity.show();
registerPermanent
creates a UDF that you can use in the current and subsequent sessions. When you call
registerPermanent
, you must also specify a location in an internal stage location where the JAR files for the UDF and its
dependencies will be uploaded.
Note
registerPermanent
does not support external stages.
For example:
import com.snowflake.snowpark_java.types.*;
...
// Create and register a permanent named UDF
// that takes in an integer argument and returns an integer value.
// Specify that the UDF and dependent JAR files should be uploaded to
// the internal stage named mystage.
UserDefinedFunction doubleUdf =
session
.udf()
.registerPermanent(
"doubleUdf",
(Integer x) -> x + x,
DataTypes.IntegerType,
DataTypes.IntegerType,
"mystage");
// Call the named UDF, passing in the "quantity" column.
// The example uses withColumn to return a DataFrame containing
// the UDF result in a new column named "doubleQuantity".
DataFrame df = session.table("sample_product_data");
DataFrame dfWithDoubleQuantity = df.withColumn("doubleQuantity", Functions.callUDF("doubleUdf", Functions.col("quantity")));
dfWithDoubleQuantity.show();
Using Objects That Are Not Serializable¶
When you create a UDF for a lambda expression, the Snowpark library serializes the lambda closure and sends it to the server for execution.
If an object captured by the lambda closure is not serializable, the Snowpark library throws an
java.io.NotSerializableException
exception.
Exception in thread "main" java.io.NotSerializableException: <YourObjectName>
If this occurs, you must make the object serializable.
Writing Initialization Code for a UDF¶
If your UDF requires initialization code or context, you can provide this through values captured as part of the UDF closure.
The following example uses a separate class to initialize the context needed by two UDFs.
The first UDF creates a new instance of the class within the lambda, so the initialization is performed every time the UDF is invoked.
The second UDF captures an instance of the class generated in your client program. The context generated on the client is serialized and is used by the UDF. Note that the context class must be serializable for this approach to work.
import com.snowflake.snowpark_java.*;
import com.snowflake.snowpark_java.types.*;
import java.io.Serializable;
// Context needed for a UDF.
class Context {
double randomInt = Math.random();
}
// Serializable context needed for the UDF.
class SerContext implements Serializable {
double randomInt = Math.random();
}
class TestUdf {
public static void main(String[] args) {
// Create the session.
Session session = Session.builder().configFile("/<path>/profile.properties").create();
session.range(1, 10, 2).show();
// Create a DataFrame with two columns ("c" and "d").
DataFrame dummy =
session.createDataFrame(
new Row[]{
Row.create(1, 1),
Row.create(2, 2),
Row.create(3, 3)
},
StructType.create(
new StructField("c", DataTypes.IntegerType),
new StructField("d", DataTypes.IntegerType))
);
dummy.show();
// Initialize the context once per invocation.
UserDefinedFunction udfRepeatedInit =
Functions.udf(
(Integer i) -> new Context().randomInt,
DataTypes.IntegerType,
DataTypes.DoubleType
);
dummy.select(udfRepeatedInit.apply(dummy.col("c"))).show();
// Initialize the serializable context only once,
// regardless of the number of times that the UDF is invoked.
SerContext sC = new SerContext();
UserDefinedFunction udfOnceInit =
Functions.udf(
(Integer i) -> sC.randomInt,
DataTypes.IntegerType,
DataTypes.DoubleType
);
dummy.select(udfOnceInit.apply(dummy.col("c"))).show();
UserDefinedFunction udfOnceInit = udf((i: Int) => sC.randomInt);
}
}
Reading Files from a UDF¶
As mentioned earlier, the Snowpark library uploads and executes UDFs on the server. If your UDF needs to read data from a file, you must ensure that the file is uploaded with the UDF.
In addition, if the content of the file remains the same between calls to the UDF, you can write your code to load the file once during the first call and not on subsequent calls. This can improve the performance of your UDF calls.
To set up a UDF to read a file:
Add the file to a JAR file.
For example, if your UDF needs to use a file in a
data/
subdirectory (data/hello.txt
), run thejar
command to add this file to a JAR file:# Create a new JAR file containing data/hello.txt. $ jar cvf <path>/myJar.jar data/hello.txt
Specify that the JAR file is a dependency, which uploads the file to the server and adds the file to the classpath. See Specifying Dependencies for a UDF.
For example:
// Specify that myJar.jar contains files that your UDF depends on. session.addDependency("<path>/myJar.jar");
In the UDF, call
Class.forName().getResourceAsStream()
to find the file in the classpath and read the file.To avoid adding a dependency on
this
, you can useClass.forName("com.snowflake.snowpark_java.DataFrame")
(rather thangetClass()
) to get theClass
object.For example, to read the
data/hello.txt
file:// Read data/hello.txt from myJar.jar. String resourceName = "/data/hello.txt"; InputStream inputStream = Class.forName("com.snowflake.snowpark_java.DataFrame").getResourceAsStream(resourceName);
In this example, the resource name starts with a
/
, which indicates that this is the full path of the file in the JAR file. (In this case, the location of the file is not relative to the package of the class.)
Note
If you don’t expect the content of the file to change between UDF calls, read the file into a static field of your class, and read the file only if the field is not set.
The following example defines an object (UDFCode
) with a function that will be used as a UDF (readFileFunc
). The function
reads the file data/hello.txt
, which is expected to contain the string hello,
. The function prepends this string to the
string passed in as an argument.
import java.io.InputStream;
import java.nio.charset.StandardCharsets;
// Create a function class that reads a file.
class UDFCode {
private static String fileContent = null;
// The code in this block reads the file. To prevent this code from executing each time that the UDF is called,
// The file content is cached in 'fileContent'.
public static String readFile() {
if (fileContent == null) {
try {
String resourceName = "/data/hello.txt";
InputStream inputStream = Class.forName("com.snowflake.snowpark_java.DataFrame")
.getResourceAsStream(resourceName);
fileContent = new String(inputStream.readAllBytes(), StandardCharsets.UTF_8);
} catch (Exception e) {
fileContent = "Error while reading file";
}
}
return fileContent;
}
}
The next part of the example registers the function as an anonymous UDF. The example calls the UDF on the NAME
column in a
DataFrame. The example assumes that the data/hello.txt
file is packaged in the JAR file myJar.jar
.
import com.snowflake.snowpark_java.types.*;
// Add the JAR file as a dependency.
session.addDependency("<path>/myJar.jar");
// Create a new DataFrame with one column (NAME)
// that contains the name "Raymond".
DataFrame myDf = session.sql("select 'Raymond' NAME");
// Register the function that you defined earlier as an anonymous UDF.
UserDefinedFunction readFileUdf = session.udf().registerTemporary(
(String s) -> UDFCode.readFile() + " : " + s, DataTypes.StringType, DataTypes.StringType);
// Call UDF for the values in the NAME column of the DataFrame.
myDf.withColumn("CONCAT", readFileUdf.apply(Functions.col("NAME"))).show();
Creating User-Defined Table Functions (UDTFs)¶
To create and register a UDTF in Snowpark, you must:
The next sections describe these steps in more detail.
For information on calling a UDTF, see Calling a UDTF.
Defining the UDTF Class¶
Define a class that implements one of the JavaUDTFn
interfaces (e.g. JavaUDTF0
, JavaUDTF1
, etc.) in the
com.snowflake.snowpark_java.udtf package, where n
specifies the number of input arguments for your UDTF. For example,
if your UDTF passes in 2 input arguments, implement the JavaUDTF2
interface.
In your class, implement the following methods:
outputSchema(), which returns a
types.StructType
object that describes the names and types of the fields in the returned rows (the “schema” of the output).process(), which is called once for each row in the input partition (see the note below).
inputSchema(), which returns a
types.StructType
object that describes the types of the input parameters.If your
process()
method passes inMap
arguments, you must implement theinputSchema()
method. Otherwise, implementing this method is optional.endPartition(), which is called once for each partition after all rows have been passed to
process()
.
When a UDTF is called, the rows are grouped into partitions before they are passed to the UDTF:
If the statement that calls the UDTF specifies the PARTITION clause (explicit partitions), that clause determines how the rows are partitioned.
If the statement does not specify the PARTITION clause (implicit partitions), Snowflake determines how best to partition the rows.
For an explanation of partitions, see Table functions and partitions.
For an example of a UDTF class, see Example of a UDTF Class.
Implementing the outputSchema() Method¶
Implement the outputSchema()
method to define the names and data types of the fields (the “output schema”) of the rows
returned by the process()
and endPartition()
methods.
public StructType outputSchema()
In this method, construct and return a StructType object that contains StructField objects representing the Snowflake data type of each field in a returned row. Snowflake supports the following type objects for the output schema for a UDTF:
SQL Data Type |
Java Type |
|
---|---|---|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
For example, if your UDTF returns a row with a single integer field:
public StructType outputSchema() { return StructType.create(new StructField("C1", DataTypes.IntegerType)); }
Implementing the process() Method¶
In your UDTF class, implement the process()
method:
Stream<Row> process(A0 arg0, ... A<n> arg<n>)
where n
is the number of arguments passed to your UDTF.
The number of arguments in the signature corresponds to the interface that you implemented. For example, if your UDTF passes in 2
input arguments and you are implementing the JavaUDTF2
interface, the process()
method has this signature:
Stream<Row> process(A0 arg0, A1 arg1)
This method is invoked once for each row in the input partition.
Choosing the Types of the Arguments¶
For the type of each argument in the process()
method, use the Java type that corresponds to the Snowflake data type of
the argument passed to the UDTF.
Snowflake supports the following data types for the arguments for a UDTF:
SQL Data Type |
Java Data Type |
Notes |
---|---|---|
The following types are supported:
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
Note
If you pass in java.util.Map
arguments, you must implement the inputSchema
method to describe the types of those
arguments. See Implementing the inputSchema() Method.
Returning Rows¶
In the process()
method, build and return a java.util.stream.Stream of Row
objects that contain the data to be
returned by the UDTF for the given input values. The fields in the row must use the types that you specified in the
outputSchema
method. (See Implementing the outputSchema() Method.)
For example, if your UDTF generates rows, construct and return an Iterable
of Row
objects for the generated rows:
import java.util.stream.Stream; ... public Stream<Row> process(Integer start, Integer count) { Stream.Builder<Row> builder = Stream.builder(); for (int i = start; i < start + count ; i++) { builder.add(Row.create(i)); } return builder.build(); }
Implementing the inputSchema() Method¶
If the process() method passes in a java.util.Map
argument, you
must implement the inputSchema()
method to describe the types of the input arguments.
Note
If the process()
method does not pass in Map
arguments, you do not need to implement the inputSchema()
method.
In this method, construct and return a StructType object that contains StructField objects representing the Snowflake data
type of each argument passed in to the process()
method. Snowflake supports the following type objects for the input
schema for a UDTF:
SQL Data Type |
Java Type |
|
---|---|---|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
For example, suppose that your process()
method passes in a Map<String, String>
argument and a
Map<String, Variant>
argument:
import java.util.Map;
import com.snowflake.snowpark_java.*;
import com.snowflake.snowpark_java.types.*;
...
public Stream<Row> process(Map<String, String> stringMap, Map<String, Variant> varMap) {
...
}
You must implement the inputSchema()
method to return a StructType
object that describes the types of these input
arguments:
import java.util.Map;
import com.snowflake.snowpark_java.types.*;
...
public StructType inputSchema() {
return StructType.create(
new StructField(
"string_map",
DataTypes.createMapType(DataTypes.StringType, DataTypes.StringType)),
new StructField(
"variant_map",
DataTypes.createMapType(DataTypes.StringType, DataTypes.VariantType)));
}
Implementing the endPartition() Method¶
Implement the endPartition
method and add code that should be executed after all rows in the input partition have been
passed to the process
method. The endPartition
method is invoked once for each input partition.
public Stream<Row> endPartition()
You can use this method if you need to perform any work after all of the rows in the partition have been processed. For example, you can:
Return rows based on state information that you capture in each
process
method call.Return rows that are not tied to a specific input row.
Return rows that summarize the output rows that have been generated by the
process
method.
The fields in the rows that you return must match the types that you specified in the outputSchema
method. (See
Implementing the outputSchema() Method.)
If you do not need to return additional rows at the end of each partition, return an empty Stream
. For example:
public Stream<Row> endPartition() { return Stream.empty(); }
Note
While Snowflake supports large partitions with timeouts tuned to process them successfully, especially large partitions can cause
processing to time out (such as when endPartition
takes too long to complete). Please contact Snowflake Support if you need the
timeout threshold adjusted for specific usage scenarios.
Example of a UDTF Class¶
The following is an example of a UDTF class that generates a range of rows.
Because the UDTF passes in 2 arguments, the class implements
JavaUDTF2
.The arguments
start
andcount
specify the starting number for the row and the number of rows to generate.
import java.util.stream.Stream;
import com.snowflake.snowpark_java.types.*;
import com.snowflake.snowpark_java.udtf.*;
class MyRangeUdtf implements JavaUDTF2<Integer, Integer> {
public StructType outputSchema() {
return StructType.create(new StructField("C1", DataTypes.IntegerType));
}
// Because the process() method in this example does not pass in Map arguments,
// implementing the inputSchema() method is optional.
public StructType inputSchema() {
return StructType.create(
new StructField("start_value", DataTypes.IntegerType),
new StructField("value_count", DataTypes.IntegerType));
}
public Stream<Row> endPartition() {
return Stream.empty();
}
public Stream<Row> process(Integer start, Integer count) {
Stream.Builder<Row> builder = Stream.builder();
for (int i = start; i < start + count ; i++) {
builder.add(Row.create(i));
}
return builder.build();
}
}
Registering the UDTF¶
Next, create an instance of the new class, and register the class by calling one of the UDTFRegistration methods. You can register a temporary or permanent UDTF.
Registering a Temporary UDTF¶
To register a temporary UDTF, call UDTFRegistration.registerTemporary
:
If you do not need to call the UDTF by name, you can register an anonymous UDTF by passing in an instance of the class:
// Register the MyRangeUdtf class that was defined in the previous example. TableFunction tableFunction = session.udtf().registerTemporary(new MyRangeUdtf()); // Use the returned TableFunction object to call the UDTF. session.tableFunction(tableFunction, Functions.lit(10), Functions.lit(5)).show();
If you need to call the UDTF by name, pass in a name of the UDTF as well:
// Register the MyRangeUdtf class that was defined in the previous example. TableFunction tableFunction = session.udtf().registerTemporary("myUdtf", new MyRangeUdtf()); // Call the UDTF by name. session.tableFunction(new TableFunction("myUdtf"), Functions.lit(10), Functions.lit(5)).show();
Registering a Permanent UDTF¶
If you need to use the UDTF in subsequent sessions, call UDTFRegistration.registerPermanent
to register a permanent UDTF.
When registering a permanent UDTF, you must specify a stage where the registration method will upload the JAR files for the UDTF and its dependencies. For example:
// Register the MyRangeUdtf class that was defined in the previous example. TableFunction tableFunction = session.udtf().registerPermanent("myUdtf", new MyRangeUdtf(), "@myStage"); // Call the UDTF by name. session.tableFunction(new TableFunction("myUdtf"), Functions.lit(10), Functions.lit(5)).show();
Calling a UDTF¶
After registering the UDTF, you can call the UDTF by passing the returned TableFunction
object to the
tableFunction
method of the Session
object:
// Register the MyRangeUdtf class that was defined in the previous example. TableFunction tableFunction = session.udtf().registerTemporary(new MyRangeUdtf()); // Use the returned TableFunction object to call the UDTF. session.tableFunction(tableFunction, Functions.lit(10), Functions.lit(5)).show();
To call a UDTF by name, construct a TableFunction
object with that name, and pass that to the tableFunction
method:
// Register the MyRangeUdtf class that was defined in the previous example. TableFunction tableFunction = session.udtf().registerTemporary("myUdtf", new MyRangeUdtf()); // Call the UDTF by name. session.tableFunction(new TableFunction("myUdtf"), Functions.lit(10), Functions.lit(5)).show();
You can also call a UDTF through a SELECT statement directly:
session.sql("select * from table(myUdtf(10, 5))");