snowflake.ml.modeling.pipeline.Pipeline

class snowflake.ml.modeling.pipeline.Pipeline(steps: List[Tuple[str, Any]])

Bases: BaseTransformer

Methods

fit(dataset)

Fit the entire pipeline using the dataset.

fit_predict(dataset)

Fits all the transformer objs one after another and transforms the data.

fit_transform(dataset)

Fits all the transformer objs one after another and transforms the data.

get_input_cols()

Input columns getter.

get_label_cols()

Label column getter.

get_output_cols()

Output columns getter.

get_params([deep])

Get parameters for this transformer.

get_passthrough_cols()

Passthrough columns getter.

get_sample_weight_col()

Sample weight column getter.

get_sklearn_args([default_sklearn_obj, ...])

Get sklearn keyword arguments.

predict(dataset)

Transform the dataset by applying all the transformers in order and predict using the estimator.

predict_log_proba(dataset)

Transform the dataset by applying all the transformers in order and apply predict_log_proba using the estimator.

predict_proba(dataset)

Transform the dataset by applying all the transformers in order and apply predict_proba using the estimator.

score(dataset)

Transform the dataset by applying all the transformers in order and apply score using the estimator.

set_drop_input_cols([drop_input_cols])

set_input_cols(input_cols)

Input columns setter.

set_label_cols(label_cols)

Label column setter.

set_output_cols(output_cols)

Output columns setter.

set_params(**params)

Set the parameters of this transformer.

set_passthrough_cols(passthrough_cols)

Passthrough columns setter.

set_sample_weight_col(sample_weight_col)

Sample weight column setter.

to_lightgbm()

to_sklearn()

to_xgboost()

transform(dataset)

Call transform of each transformer in the pipeline.

Attributes

model_signatures