snowflake.ml.modeling.pipeline.Pipeline¶
- class snowflake.ml.modeling.pipeline.Pipeline(steps: List[Tuple[str, Any]])¶
Bases:
BaseTransformer
Methods
fit
(dataset)Fit the entire pipeline using the dataset.
fit_predict
(dataset)Fits all the transformer objs one after another and transforms the data.
fit_transform
(dataset)Fits all the transformer objs one after another and transforms the data.
get_input_cols
()Input columns getter.
get_label_cols
()Label column getter.
get_output_cols
()Output columns getter.
get_params
([deep])Get parameters for this transformer.
get_passthrough_cols
()Passthrough columns getter.
get_sample_weight_col
()Sample weight column getter.
get_sklearn_args
([default_sklearn_obj, ...])Get sklearn keyword arguments.
predict
(dataset)Transform the dataset by applying all the transformers in order and predict using the estimator.
predict_log_proba
(dataset)Transform the dataset by applying all the transformers in order and apply predict_log_proba using the estimator.
predict_proba
(dataset)Transform the dataset by applying all the transformers in order and apply predict_proba using the estimator.
score
(dataset)Transform the dataset by applying all the transformers in order and apply score using the estimator.
set_drop_input_cols
([drop_input_cols])set_input_cols
(input_cols)Input columns setter.
set_label_cols
(label_cols)Label column setter.
set_output_cols
(output_cols)Output columns setter.
set_params
(**params)Set the parameters of this transformer.
set_passthrough_cols
(passthrough_cols)Passthrough columns setter.
set_sample_weight_col
(sample_weight_col)Sample weight column setter.
to_lightgbm
()to_sklearn
()to_xgboost
()transform
(dataset)Call transform of each transformer in the pipeline.
Attributes
model_signatures