snowflake.ml.modeling.pipeline.Pipeline¶
- class snowflake.ml.modeling.pipeline.Pipeline(steps: List[Tuple[str, Any]])¶
 Bases:
BaseTransformerMethods
fit(dataset)Fit the entire pipeline using the dataset.
fit_predict(dataset)Fits all the transformer objs one after another and transforms the data.
fit_transform(dataset)Fits all the transformer objs one after another and transforms the data.
get_input_cols()Input columns getter.
get_label_cols()Label column getter.
get_output_cols()Output columns getter.
get_params([deep])Get parameters for this transformer.
get_passthrough_cols()Passthrough columns getter.
get_sample_weight_col()Sample weight column getter.
get_sklearn_args([default_sklearn_obj, ...])Get sklearn keyword arguments.
predict(dataset)Transform the dataset by applying all the transformers in order and predict using the estimator.
predict_log_proba(dataset)Transform the dataset by applying all the transformers in order and apply predict_log_proba using the estimator.
predict_proba(dataset)Transform the dataset by applying all the transformers in order and apply predict_proba using the estimator.
score(dataset)Transform the dataset by applying all the transformers in order and apply score using the estimator.
set_drop_input_cols([drop_input_cols])set_input_cols(input_cols)Input columns setter.
set_label_cols(label_cols)Label column setter.
set_output_cols(output_cols)Output columns setter.
set_params(**params)Set the parameters of this transformer.
set_passthrough_cols(passthrough_cols)Passthrough columns setter.
set_sample_weight_col(sample_weight_col)Sample weight column setter.
to_lightgbm()to_sklearn()to_xgboost()transform(dataset)Call transform of each transformer in the pipeline.
Attributes
model_signatures