Creating User-Defined Table Functions (UDTFs) for DataFrames in Python

The Snowpark API provides methods that you can use to create a user-defined table function with a handler written in Python. This topic explains how to create these types of functions.


You can create a user-defined table function (UDTF) using the Snowpark API.

You do this in a way similar to creating a scalar user-defined function (UDF) with the API, as described in Creating User-Defined Functions (UDFs) for DataFrames in Python. Key differences include UDF handler requirements and parameter values required when registering the UDTF.

To create and register a UDTF with Snowpark, you must:

  • Implement a UDTF handler.

    The handler contains the UDTF’s logic. A UDTF handler must implement functions that Snowflake will invoke at runtime when the UDTF is called. For more information, see Implementing a UDTF Handler.

  • Register the UDTF and its handler in the Snowflake database.

    You can use the Snowpark API to register the UDTF and its handler. Once you’ve registered the UDTF, you can call it from SQL or by using the Snowpark API. For more information about registering, see Registering a UDTF.

For information on calling a UDTF, see Calling User-Defined Table Functions (UDTFs).

Implementing a UDTF Handler

As described in detail in Writing a UDTF in Python, a UDTF handler class must implement methods that Snowflake invokes when the UDTF is called. You can use the class you write as a handler whether you’re registering the UDTF with the Snowpark API or creating it with SQL using the CREATE FUNCTION statement.

Methods of a handler class are designed to process rows and partitions received by the UDTF.

A UDTF handler class implements the following, which Snowflake invokes at run time:

  • An __init__ method. Optional. Invoked to initialize stateful processing of input partitions.

  • A process method. Required. Invoked for each input row. The method returns a tabular value as tuples.

  • An end_partition method. Optional. Invoked to finalize processing of input partitions.

    While Snowflake supports large partitions with timeouts tuned to process them successfully, especially large partitions can cause processing to time out (such as when end_partition takes too long to complete). Please contact Snowflake Support if you need the timeout threshold adjusted for specific usage scenarios.

For handler details and examples, see Writing a UDTF in Python.

Registering a UDTF

Once you’ve implemented a UDTF handler, you can use the Snowpark API to register the UDTF on the Snowflake database. Registering the UDTF creates the UDTF so that it can be called.

You can register the UDTF as a named or anonymous function, as you can for a scalar UDF. For related information about registering a scalar UDF, see Creating an Anonymous UDF and Creating and Registering a Named UDF.

When you register a UDTF, you specify parameter values that Snowflake needs to create the UDTF. (Many of these parameters correspond functionally to clauses of the CREATE FUNCTION statement in SQL. For more information, see CREATE FUNCTION.)

Most of these parameters are the same as those you specify when you create a scalar UDF (for more information, see Creating User-Defined Functions (UDFs) for DataFrames in Python). The primary differences are due to the fact that a UDTF returns a tabular value and the fact that its handler is a class, rather than a function. For a complete list of parameters, see the documentation for the APIs linked below.

To register a UDTF with Snowpark, you use one of the following, specifying parameter values required to create the UDTF in the database. For information that differentiates these options, see UDFRegistration, which describes similar options for registering a scalar UDF.

Defining a UDTF’s Input Types and Output Schema

When you register a UDTF, you specify details about the function’s parameters and output value. You do this so that the function itself declares types that accurately correspond to those for the function’s underlying handler.

For examples, see Examples in this topic and in the snowflake.snowpark.udtf.UDTFRegistration reference.

You specify the following for the UDTF when registering it:

  • Types of its input parameters as a value of the registering function’s input_types parameter. The input_types parameter is optional if you provide type hints in the process method’s declaration.

    Specify this value as a list of types based on snowflake.snowpark.types.DataType. For example, you might specify input_types=[StringType(), IntegerType()].

  • Schema of its tabular output as a value of the registering function’s output_schema parameter.

    The output_schema value can be one of the following:

    • A list of the names for columns in the UDTF’s return value.

      The list will include column names only, so you must also provide type hints in the process method’s declaration.

    • A StructType that represents the output table’s column names and types.

      Code in the following example assigns a schema as a value to an output variable, then uses the variable when registering the UDTF.

      >>> from snowflake.snowpark.types import StructField, StructType, StringType, IntegerType, FloatType
      >>> from snowflake.snowpark.functions import udtf, table_function
      >>> schema = StructType([
      ...     StructField("symbol", StringType())
      ...     StructField("cost", IntegerType()),
      ... ])
      >>> @udtf(output_schema=schema,input_types=[StringType(), IntegerType(), FloatType()],stage_location="straut_udf",is_permanent=True,name="test_udtf",replace=True)
      ... class StockSale:
      ...     def process(self, symbol, quantity, price):
      ...         cost = quantity * price
      ...         yield (symbol, cost)


The following is a brief list of examples. For more examples, see snowflake.snowpark.udtf.UDTFRegistration.

Registering a UDTF with the udtf Function

Register the function.

>>> from snowflake.snowpark.types import IntegerType, StructField, StructType
>>> from snowflake.snowpark.functions import udtf, lit
>>> class GeneratorUDTF:
...     def process(self, n):
...         for i in range(n):
...             yield (i, )
>>> generator_udtf = udtf(GeneratorUDTF, output_schema=StructType([StructField("number", IntegerType())]), input_types=[IntegerType()])

Call the function.

>>> session.table_function(generator_udtf(lit(3))).collect()  # Query it by calling it
[Row(NUMBER=0), Row(NUMBER=1), Row(NUMBER=2)]
>>> session.table_function(, lit(3)).collect()  # Query it by using the name
[Row(NUMBER=0), Row(NUMBER=1), Row(NUMBER=2)]

Registering a UDTF with the register Function

Register the function.

>>> from collections import Counter
>>> from typing import Iterable, Tuple
>>> from snowflake.snowpark.functions import lit
>>> class MyWordCount:
...     def __init__(self):
...         self._total_per_partition = 0
...     def process(self, s1: str) -> Iterable[Tuple[str, int]]:
...         words = s1.split()
...         self._total_per_partition = len(words)
...         counter = Counter(words)
...         yield from counter.items()
...     def end_partition(self):
...         yield ("partition_total", self._total_per_partition)
>>> udtf_name = "word_count_udtf"
>>> word_count_udtf = session.udtf.register(
...     MyWordCount, ["word", "count"], name=udtf_name, is_permanent=False, replace=True
... )

Call the function.

>>> # Call it by its name
>>> df1 = session.table_function(udtf_name, lit("w1 w2 w2 w3 w3 w3"))
|"WORD"           |"COUNT"  |
|w1               |1        |
|w2               |2        |
|w3               |3        |
|partition_total  |6        |

Registering a UDTF with the register_from_file Function

Register the function.

>>> from snowflake.snowpark.types import IntegerType, StructField, StructType
>>> from snowflake.snowpark.functions import udtf, lit
>>> _ = session.sql("create or replace temp stage mystage").collect()
>>> _ = session.file.put("tests/resources/test_udtf_dir/", "@mystage", auto_compress=False)
>>> generator_udtf = session.udtf.register_from_file(
...     file_path="@mystage/",
...     handler_name="GeneratorUDTF",
...     output_schema=StructType([StructField("number", IntegerType())]),
...     input_types=[IntegerType()]
... )

Call the function.

>>> session.table_function(generator_udtf(lit(3))).collect()
[Row(NUMBER=0), Row(NUMBER=1), Row(NUMBER=2)]