Snowflake Datasets¶
データセットは、機械学習ワークフロー用に特別に設計された新しいSnowflakeスキーマレベルのオブジェクトです。Snowflake Datasetsは、バージョンごとに整理されたデータのコレクションを保持します。各バージョンは、データのマテリアライズされたスナップショットを保持し、保証された不変性、効率的なデータアクセス、一般的な深層学習フレームワークとの相互運用性を備えています。
Snowflake Datasetsは次のような場合に使用します。
再現性のある機械学習モデルのトレーニングとテストのために、大規模なデータセットを管理し、バージョン管理する必要があります。
分散トレーニングやデータストリーミングには、きめ細かいファイルレベルのアクセスやデータシャッフリングが必要です。
外部の機械学習フレームワークやツールと統合する必要があります。
ML モデルの作成に使用された系統を追跡する必要があります。
データセットはマテリアライズドデータオブジェクトです。Snowflake ML または SQL コマンドを使用してやりとりできます。Snowsightデータベースオブジェクトエクスプローラーには表示されません。
注釈
データセットにはストレージコストがかかります。コストを最小化するために未使用のデータセットを削除します。
2025年3月20日 の一般公開リリース以前に作成されたデータセットは、複製をサポートしていません。詳細については、 複数のアカウント間にわたる複製とフェールオーバーの概要 をご参照ください。
インストール¶
Dataset Python SDK はバージョン1.7.5からSnowpark ML (Pythonパッケージ snowflake-ml-python
)に含まれています。インストール手順については、 Snowflake ML をローカルで使用する をご参照ください。
必要な権限¶
データセットの作成には、 CREATE DATASET スキーマレベルの権限が必要です。Datasetsのバージョンの追加や削除など、データセットを変更するには、Datasetに OWNERSHIP が必要です。データセットからの読み込みに必要なのは、そのデータセット(または OWNERSHIP)の USAGE 権限のみです。Snowflakeでの権限付与の詳細については、 GRANT <権限> ... TO ROLE をご参照ください。
Tip
setup_feature_store
メソッドまたは 権限設定 SQL スクリプト のいずれかを使用して、Snowflake機能ストアの権限を設定すると、データセットの権限も設定されます。これらのいずれかの方法で機能ストアの権限をすでに設定している場合は、これ以上の操作は必要ありません。
Datasetsの作成および使用¶
データセットの作成と管理は、 SQL またはPythonのどちらでも可能です。SQL コマンドの使用情報については、 SQL コマンド を参照してください。Python API の使用情報については、 snowflake.ml.dataset を参照してください。
snowflake.ml.dataset.create_from_dataframe
関数にSnowpark DataFrame を渡してデータセットを作成します。
from snowflake import snowpark
from snowflake.ml import dataset
# Create Snowpark Session
# See https://docs.snowflake.com/en/developer-guide/snowpark/python/creating-session
session = snowpark.Session.builder.configs(connection_parameters).create()
# Create a Snowpark DataFrame to serve as a data source
# In this example, we generate a random table with 100 rows and 1 column
df = session.sql(
"select uniform(0, 10, random(1)) as x, uniform(0, 10, random(2)) as y from table(generator(rowcount => 100))"
)
# Materialize DataFrame contents into a Dataset
ds1 = dataset.create_from_dataframe(
session,
"my_dataset",
"version1",
input_dataframe=df)
Datasetsはバージョン管理されています。各バージョンは、データセットが管理するデータの、不変の、ポイントインタイムのスナップショットです。Python APIには、与えられたデータセットが使用するために選択されているかどうかを示す Dataset.selected_version
プロパティが含まれています。このプロパティは、 dataset.create_from_dataframe
および dataset.load_dataset
ファクトリーメソッドによって自動的に設定されます。したがって、データセットを作成すると、作成されたバージョンが自動的に選択されます。 Dataset.select_version
および Dataset.create_version
メソッドを使用して、明示的にバージョンを切り替えることもできます。データセットからの読み込みは、アクティブな選択バージョンから読み込みます。
# Inspect currently selected version
print(ds1.selected_version) # DatasetVersion(dataset='my_dataset', version='version1')
print(ds1.selected_version.created_on) # Prints creation timestamp
# List all versions in the Dataset
print(ds1.list_versions()) # ["version1"]
# Create a new version
ds2 = ds1.create_version("version2", df)
print(ds1.selected_version.name) # "version1"
print(ds2.selected_version.name) # "version2"
print(ds1.list_versions()) # ["version1", "version2"]
# selected_version is immutable, meaning switching versions with
# ds1.select_version() returns a new Dataset object without
# affecting ds1.selected_version
ds3 = ds1.select_version("version2")
print(ds1.selected_version.name) # "version1"
print(ds3.selected_version.name) # "version2"
Datasetsからのデータの読み込み¶
データセットのバージョンデータは、Apache Parquetフォーマットの均等サイズのファイルとして保存されます。 Dataset
クラスは、Snowflake Datasetsからデータを読み込むための FileSet と同様の API を提供し、TensorFlow および PyTorch の組み込みコネクタを含みます。APIは、カスタムフレームワークコネクタをサポートするために拡張可能です。
Datesetからの読み込みには、アクティブな選択バージョンが必要です。
TensorFlowに接続する¶
Datasetsを TensorFlow の tf.data.Dataset
に変換し、バッチでストリーミングすることで、効率的な学習と評価を行うことができます。
import tensorflow as tf
# Convert Snowflake Dataset to TensorFlow Dataset
tf_dataset = ds1.read.to_tf_dataset(batch_size=32)
# Train a TensorFlow model
for batch in tf_dataset:
# Extract and build tensors as needed
input_tensor = tf.stack(list(batch.values()), axis=-1)
# Forward pass (details not included for brevity)
outputs = model(input_tensor)
PyTorchに接続する¶
Datasetsは、PyTorchDataPipesへの変換もサポートしており、効率的なトレーニングと評価のためにバッチでストリーミングできます。
import torch
# Convert Snowflake Dataset to PyTorch DataPipe
pt_datapipe = ds1.read.to_torch_datapipe(batch_size=32)
# Train a PyTorch model
for batch in pt_datapipe:
# Extract and build tensors as needed
input_tensor = torch.stack([torch.from_numpy(v) for v in batch.values()], dim=-1)
# Forward pass (details not included for brevity)
outputs = model(input_tensor)
Snowpark MLに接続する¶
データセットをSnowpark DataFramesに変換して、Snowpark ML Modelingと統合することもできます。変換されたSnowpark DataFrame は、Dataset作成時に提供された DataFrame と同じではなく、Datasetバージョンのマテリアライズされたデータを指しています。
from snowflake.ml.modeling.ensemble import random_forest_regressor
# Get a Snowpark DataFrame
ds_df = ds1.read.to_snowpark_dataframe()
# Note ds_df != df
ds_df.explain()
df.explain()
# Train a model in Snowpark ML
xgboost_model = random_forest_regressor.RandomForestRegressor(
n_estimators=100,
random_state=42,
input_cols=["X"],
label_cols=["Y"],
)
xgboost_model.fit(ds_df)
ファイルへ直接アクセスする¶
Dataset API は、 fsspec インターフェースも公開します。このインターフェースは、PyArrowや Daskなどの外部ライブラリや、 fsspec
をサポートし、分散および/またはストリームベースのモデル学習を可能にするその他のパッケージとのカスタム統合を構築するために使用できます。
print(ds1.read.files()) # ['snow://dataset/my_dataset/versions/version1/data_0_0_0.snappy.parquet']
import pyarrow.parquet as pq
pd_ds = pq.ParquetDataset(ds1.read.files(), filesystem=ds1.read.filesystem())
import dask.dataframe as dd
dd_df = dd.read_parquet(ds1.read.files(), filesystem=ds1.read.filesystem())
SQL を使ってデータセットのバージョンから読み込む¶
標準的なSnowflake SQL コマンドを使用して、データセットバージョンからデータを読み込むことができます。SQL コマンドを使用して、以下の操作を行うことができます。
ファイルのリスト
スキーマの推測
ステージから直接データをクエリします。
重要
データセットから読み込むには、 USAGE または OWNERSHIP の権限が必要です。
データセットバージョンからファイルをリストする¶
データセットバージョンに含まれるファイルをリストするには、 LIST snow_url
コマンドを使用します。データセットバージョン内のすべてのファイルをリストするには、次の SQL 構文を使います。
LIST 'snow://dataset/<dataset_name>/versions/<dataset_version>'
ファイルの分析と列定義の取得¶
INFER_SCHEMA 関数を使用して、データセットバージョンのファイルを分析し、列定義を取得します。データセットバージョンに含まれるすべてのファイルをリストするには、次の SQL の例を使用してください。
INFER_SCHEMA(
LOCATION => 'snow://dataset/<dataset_name>/versions/<dataset_version>',
FILE_FORMAT => '<file_format_name>'
)
データセットバージョンの場所を取得するには、例で指定したパターンを使用する必要があります。
FILE_FORMAT
の場合は PARQUET
を指定してください。
次の例では、ファイル形式を作成し、 INFER_SCHEMA 関数を実行しています。
CREATE FILE FORMAT my_parquet_format TYPE = PARQUET;
SELECT *
FROM TABLE(
INFER_SCHEMA(
FILE_FORMAT => 'snow://dataset/MYDS/versions/v1,
FILE_FORMAT => 'my_parquet_format'
)
);
ステージクエリ¶
外部テーブルへのクエリと同様に、データセットバージョンに保存されているファイルから直接データをクエリします。次の SQL の例を参考にしてください。
SELECT $1
FROM 'snow://dataset/foo/versions/V1'
( FILE_FORMAT => 'my_parquet_format',
PATTERN => '.*data.*' ) t;
SQL コマンド¶
データセットの作成と管理には、 SQL コマンドを使用できます。詳細については、次をご参照ください。
現在の制限事項と既知の問題¶
データセット名は SQL の識別子であり、 Snowflakeの識別子要件 に従います。
データセットバージョンは文字列で、最大長は128文字です。一部の文字は許可されていないため、エラーメッセージが表示されます。
広いスキーマ(約4,000列以上)を持つデータセットに対する一部のクエリ操作は、完全に最適化されません。今後のリリースでは改善される予定です。