Consuming results¶
Returning results inline¶
The most common way of consuming results is by passing a complete
callback to connection.execute()
. When the statement has finished executing and the result is ready to be consumed, the complete
callback is invoked with the result rows returned inline:
connection.execute({ sqlText: 'SELECT * FROM sometable', complete: function(err, stmt, rows) { if (err) { console.error('Failed to execute statement due to the following error: ' + err.message); } else { console.log('Number of rows produced: ' + rows.length); } } });
Streaming results¶
You can also consume a result as a stream of rows by setting the streamResult
connection parameter to true
in connection.execute
when calling the statement.streamRows()
method. Enabling this parameter causes
the method to return a Node.js Readable
stream, which you can use to consume rows as they are received.
For more information about the Readable
stream, refer to the Node.js documentation.
Important
For any result set that might exceed Node’s default memory, Snowflake highly recommends that you set
streamResult
to true
when streaming results. With the default value (false
), the connector
stores all of the rows in an array before streaming the results. With smaller result sets, this factor is
not normally an issue. However, with larger result sets, storing all the results in memory can contribute to an OOM error.
Recent versions of the Snowflake Node.js driver (1.6.23 and later) implement backpressure functionality to ensure that, when consuming results, data is not pushed to the stream faster than data is read from the stream.
For example, the following code fragment consumes the results using the Readable
event:
var connection = snowflake.createConnection({ account: process.env.SFACCOUNT, username: process.env.SFUSER, // ... streamResult: true }); // [..rest of the code..] connection.execute({ sqlText: "select L_COMMENT from SNOWFLAKE_SAMPLE_DATA.TPCH_SF100.LINEITEM limit 100000;", streamResult: true, complete: function (err, stmt) { var stream = stmt.streamRows(); // Read data from the stream when it is available stream.on('readable', function (row) { while ((row = this.read()) !== null) { console.log(row); } }).on('end', function () { console.log('done'); }).on('error', function (err) { console.log(err); }); } });
Batch processing results¶
By default, the statement.streamRows()
method produces a stream that includes every row in the result. However, if you only want to consume a subset of the result, or if you want to consume result rows
in batches, you can call streamRows()
with start
and end
arguments. When these additional options are specified, only rows in the requested range are streamed:
connection.execute({ sqlText: 'SELECT * FROM sometable', streamResult: true, // prevent rows from being returned inline in the complete callback complete: function(err, stmt, rows) { // no rows returned inline because streamResult was set to true console.log('rows: ' + rows); // 'rows: undefined' // only consume at most the last 5 rows in the result rows = []; stmt.streamRows({ start: Math.max(0, stmt.getNumRows() - 5), end: stmt.getNumRows() - 1, }) .on('error', function(err) { console.error('Unable to consume requested rows'); }) .on('data', function(row) { rows.push(row); }) .on('end', function() { console.log('Number of rows consumed: ' + rows.length); }); } })
Data type casting¶
When result rows are produced, the driver automatically maps SQL data types to their corresponding JavaScript equivalents. For example, values of type TIMESTAMP and DATE are returned as JavaScript Date objects.
For the full mapping of JavaScript to SQL data types, refer to the table below:
SQL Data Type
JavaScript Data Type
Notes
VARCHAR, CHAR, CHARACTER, STRING, TEXT
String
INT, INTEGER, BIGINT, SMALLINT
Number
This is the default mapping. Use the session parameter JS_TREAT_INTEGER_AS_BIGINT to map to JavaScript Bigint.
NUMBER(precision, scale), DECIMAL(p, s), NUMERIC(p, s) where
scale
= 0Number
This is the default mapping. Use the session parameter JS_TREAT_INTEGER_AS_BIGINT to map to JavaScript Bigint.
NUMBER(precision, scale), DECIMAL(p, s), NUMERIC(p, s) where
scale
> 0Number
FLOAT, FLOAT4, FLOAT8, DOUBLE, DOUBLE PRECISION, REAL
Number
TIMESTAMP, TIMESTAMP_LTZ, TIMESTAMP_NTZ, TIMESTAMP_TZ
Date
TIMESTAMP_NTZ values are returned in UTC.
DATE
Date
TIME
String
The TIME data type in SQL has no equivalent in JavaScript, so it is mapped to a JavaScript string.
BOOLEAN
Boolean
VARIANT, ARRAY, OBJECT
JSON
Fetching integer data types as Bigint¶
By default, Snowflake INTEGER columns (including BIGINT
, NUMBER(p, 0)
, etc.) are converted to JavaScript’s Number
data type.
However, the largest legal Snowflake integer values are larger than the largest legal JavaScript Number values. To convert Snowflake INTEGER
columns to JavaScript Bigint
, which can store larger values than JavaScript Number
, set the session parameter JS_TREAT_INTEGER_AS_BIGINT
.
You can use the following methods to set these parameter values:
Use the ALTER SESSION statement, as shown below:
connection.execute( { sqlText: 'ALTER SESSION SET JS_TREAT_INTEGER_AS_BIGINT = TRUE', complete: function ... } );
Specify the parameter in the connection configuration information:
var connection = snowflake.createConnection( { username: 'fakeusername', password: 'fakepassword', account: 'fakeaccountidentifier', jsTreatIntegerAsBigInt: true } );
Fetching data types as strings¶
When calling connection.execute()
, you can use the fetchAsString
option to return the following
data types as strings: Boolean
, Number
, Date
, Buffer
, and JSON
.
You can use this option, for example, to return:
Formatted versions of values of type DATE and TIMESTAMP (or its variants).
String versions of numerical SQL types that can’t be converted to JavaScript numbers without loss in precision.
The following example uses fetchAsString
to convert a high-precision Number
value to a string.:
connection.execute({
sqlText: 'SELECT 1.123456789123456789123456789 as "c1"',
fetchAsString: ['Number'],
complete: function(err, stmt, rows) {
if (err) {
console.error('Failed to execute statement due to the following error: ' + err.message);
} else {
console.log('c1: ' + rows[0].c1); // c1: 1.123456789123456789123456789
}
}
});
Parsing XML data¶
Beginning with version 1.7.0 of the driver, you can use the following fast-xml-parser
library configuration options to customize how the driver processes XML document attributes when querying columns
with XML content. For more information about these supported options and how they affect XML data parsing,
see xmlParserConfig options.
You can download the fast-xml-parser.
By default, the Node.js driver ignores XML element attributes when returning XML data from a query. For example,
in the following XML content, the <piece>
element includes an id
attribute:
<exhibit name="Art Show">
<piece id="000001">
<name>Mona Lisa</name>
<artist>Leonardo da Vinci</artist>
<year>1503</year>
</piece>
<piece id="000002">
<name>The Starry Night</name>
<artist>Vincent van Gogh</artist>
<year>1889</year>
</piece>
</exhibit>
By default, when the Node.js driver returns the result set, it ignores the id
attribute and returns the following
output. Notice the attribute names and values are not included.
{
exhibit: {
piece: [
{
"name": "Mona Lisa",
"artist": "Leonardo da Vinci",
"year": "1503",
},
{
"name": "The Starry Night",
"artist": "Vincent van Gogh",
"year": "1889",
}
]
}
}
To set the fast-xml-parser
options, create an xmlParserConfig
element similar to the following example:
const snowflake = require('snowflake-sdk'); snowflake.configure({ xmlParserConfig: { /* Parameters that you can override * ignoreAttributes - default true, * attributeNamePrefix - default '@_', * attributesGroupName - default unset, * alwaysCreateTextNode - default false */ ignoreAttributes: false, attributesGroupName: '@', attributeNamePrefix: '' } });
With these settings, the driver parses the XML data and produces the following:
{
exhibit: {
piece: [
{
"name": "Mona Lisa",
"artist": "Leonardo da Vinci",
"year": "1503",
'@': { id: '000001' }
},
{
"name": "The Starry Night",
"artist": "Vincent van Gogh",
"year": "1889",
'@': { id: '000002' }
}
],
'@': { name: 'Art Show' }
}
Returning result sets that contain duplicate column names¶
In version 1.8.0, the Snowflake Node.js Driver introduced a new rowMode configuration option that lets you specify how you want the driver to return result sets that contain duplicate column names.
Prior to version 1.8.0, the Snowflake Node.js Driver always returned the result set from a SELECT command as a JavaScript object. In cases where the result set contained duplicate column names and values, some elements could be omitted due to the way JavaScript objects handle duplicate names.
The rowMode
option lets you specify how result set data is returned to avoid potential loss of information, including as:
array
object
(default)object_with_renamed_duplicated_columns
To illustrate, assume you submit the following query:
select *
from (select 'a' as key, 1 as foo, 3 as name) as table1
join (select 'a' as key, 2 as foo, 3 as name2) as table2 on table1.key = table2.key
join (select 'a' as key, 3 as foo) as table3 on table1.key = table3.key
Based on the value of rowMode
, the driver returns the result sets as follows:
object
(or unset){KEY: 'a', FOO: 3, NAME: 3, NAME2: 3};
array
['a', 1, 3, 'a', 2, 3, 'a', 3];
object_with_renamed_duplicated_columns
{KEY: 'a', FOO: 1, NAME: 3, KEY_2: 'a', FOO_2: 2, NAME2: 3, KEY_3: 'a', FOO_3: 3};
You can set the rowMode
parameter in the connection or statement configuration level, as shown below. If set in
both places, the statement level value takes precedence.
Configuration level
snowflake.createConnection({ account: account, username: username, ... rowMode: 'array'})
Statement level
connection.execute({ sqlText: sql, rowMode: 'array', ... )}
Customizing how result sets process JSON and XML data¶
The Snowflake Node.js driver provides the following default parsers for processing JSON and XML data in result sets:
JSON: Returns the result from a new
Function
object.XML:
fast-xml-parser
.The default
fast-xml-parser
module supports a subset of features, as described in Parsing XML data.You can download fast-xml-parser.
If you prefer to use a custom parser, you can use the following examples to configure them:
Use the eval JSON parser, which the driver used prior to version 1.6.21:
const snowflake = require('snowflake-sdk'); snowflake.configure({ jsonColumnVariantParser: rawColumnValue => JSON.parse(rawColumnValue) })
Use the
fast-xml-parser
parser, with the ability to customize all of its options:const snowflake = require('snowflake-sdk'); snowflake.configure({ xmlColumnVariantParser: rawColumnValue => new (require("fast-xml-parser")).XMLParser().parse(rawColumnValue) })
Configure custom parsers for both in the same declaration:
const snowflake = require('snowflake-sdk'); snowflake.configure({ jsonColumnVariantParser: rawColumnValue => JSON.parse(rawColumnValue), xmlColumnVariantParser: rawColumnValue => new (require("fast-xml-parser")).XMLParser().parse(rawColumnValue) })