SnowConvert : instruction SELECT de Redshift¶
SELECT¶
Description¶
Renvoie des lignes à partir de tables, de vues et de fonctions définies par l’utilisateur. (Référence linguistique Redshift SQL instruction SELECT)
Grammar Syntax¶
[ WITH with_subquery [, ...] ]
SELECT
[ TOP number | [ ALL | DISTINCT ]
* | expression [ AS output_name ] [, ...] ]
[ FROM table_reference [, ...] ]
[ WHERE condition ]
[ [ START WITH expression ] CONNECT BY expression ]
[ GROUP BY expression [, ...] ]
[ HAVING condition ]
[ QUALIFY condition ]
[ { UNION | ALL | INTERSECT | EXCEPT | MINUS } query ]
[ ORDER BY expression [ ASC | DESC ] ]
[ LIMIT { number | ALL } ]
[ OFFSET start ]
Pour plus d’informations, veuillez vous référer à chacun des liens suivants :
Clause CONNECT BY¶
Description¶
La clause CONNECT BY
spécifie la relation entre les lignes d’une hiérarchie. Vous pouvez utiliser CONNECT BY
pour sélectionner des lignes dans un ordre hiérarchique en joignant la table à elle-même et en traitant les données hiérarchiques. (Référence linguistique Redshift SQL clause CONNECT BY)
La clauseCONNECT BY est prise en charge dans Snowflake.
Grammar Syntax
[START WITH start_with_conditions]
CONNECT BY connect_by_conditions
Modèles d’échantillons de sources
Code d’entrée :
CREATE TABLE employee (
id INT,
name VARCHAR(20),
manager_id INT
);
INSERT INTO employee(id, name, manager_id) VALUES
(100, 'Carlos', null),
(101, 'John', 100),
(102, 'Jorge', 101),
(103, 'Kwaku', 101),
(110, 'Liu', 101),
(106, 'Mateo', 102),
(110, 'Nikki', 103),
(104, 'Paulo', 103),
(105, 'Richard', 103),
(120, 'Saanvi', 104),
(200, 'Shirley', 104),
(201, 'Sofía', 102),
(205, 'Zhang', 104);
SELECT COUNT(*)
FROM
Employee "start"
CONNECT BY PRIOR id = manager_id
START WITH name = 'John';
COUNT(*) |
---|
12 |
Code de sortie :
CREATE TABLE employee (
id INT,
name VARCHAR(20),
manager_id INT
)
COMMENT = '{ "origin": "sf_sc", "name": "snowconvert", "version": { "major": 0, "minor": 0, "patch": "0" }, "attributes": { "component": "redshift", "convertedOn": "11/05/2024", "domain": "test" }}';
INSERT INTO employee (id, name, manager_id) VALUES
(100, 'Carlos', null),
(101, 'John', 100),
(102, 'Jorge', 101),
(103, 'Kwaku', 101),
(110, 'Liu', 101),
(106, 'Mateo', 102),
(110, 'Nikki', 103),
(104, 'Paulo', 103),
(105, 'Richard', 103),
(120, 'Saanvi', 104),
(200, 'Shirley', 104),
(201, 'Sofía', 102),
(205, 'Zhang', 104);
SELECT COUNT(*)
FROM
Employee "start"
CONNECT BY PRIOR id = manager_id
START WITH RTRIM( name) = RTRIM( 'John');
COUNT(*) |
---|
12 |
EWIs connexes
Il n’y a pas de problème connu.
Clause FROM
Description
La clause FROM
d’une requête annonce les références des tables (tables, vues et sous-requêtes) à partir desquelles les données sont sélectionnées. Si plusieurs références de tables sont annoncées, les tables doivent être reliées en utilisant la syntaxe appropriée dans la clause FROM
ou la clause WHERE
. Si aucun critère de jointure n’est spécifié, le système traite la requête comme une jointure croisée. (Référence linguistique Redshift SQL clause FROM)
Avertissement
La clause FROM est partiellement prise en charge dans Snowflake. Le dépivotage d’objet n’est pas pris en charge actuellement.
Grammar Syntax¶
FROM table_reference [, ...]
<table_reference> ::=
with_subquery_table_name [ table_alias ]
table_name [ * ] [ table_alias ]
( subquery ) [ table_alias ]
table_reference [ NATURAL ] join_type table_reference
[ ON join_condition | USING ( join_column [, ...] ) ]
table_reference PIVOT (
aggregate(expr) [ [ AS ] aggregate_alias ]
FOR column_name IN ( expression [ AS ] in_alias [, ...] )
) [ table_alias ]
table_reference UNPIVOT [ INCLUDE NULLS | EXCLUDE NULLS ] (
value_column_name
FOR name_column_name IN ( column_reference [ [ AS ]
in_alias ] [, ...] )
) [ table_alias ]
UNPIVOT expression AS value_alias [ AT attribute_alias ]
Modèles d’échantillons de sources¶
Types de jonctions¶
Snowflake prend en charge tous les types de jonctions. Pour plus d’informations, voir la documentation JOIN.
Code d’entrée :¶
CREATE TABLE employee (
id INT,
name VARCHAR(20),
manager_id INT
);
INSERT INTO employee(id, name, manager_id) VALUES
(100, 'Carlos', null),
(101, 'John', 100),
(102, 'Jorge', 101),
(103, 'Kwaku', 101),
(110, 'Liu', 101),
(106, 'Mateo', 102),
(110, 'Nikki', 103),
(104, 'Paulo', 103),
(105, 'Richard', 103),
(120, 'Saanvi', 104),
(200, 'Shirley', 104),
(201, 'Sofía', 102),
(205, 'Zhang', 104);
CREATE TABLE department (
id INT,
name VARCHAR(50),
manager_id INT
);
INSERT INTO department(id, name, manager_id) VALUES
(1, 'HR', 100),
(2, 'Sales', 101),
(3, 'Engineering', 102),
(4, 'Marketing', 103);
SELECT e.name AS employee_name, d.name AS department_name
FROM employee e
INNER JOIN department d ON e.manager_id = d.manager_id;
SELECT e.name AS employee_name, d.name AS department_name
FROM employee e
LEFT JOIN department d ON e.manager_id = d.manager_id;
SELECT d.name AS department_name, e.name AS manager_name
FROM department d
RIGHT JOIN employee e ON d.manager_id = e.id;
SELECT e.name AS employee_name, d.name AS department_name
FROM employee e
FULL JOIN department d ON e.manager_id = d.manager_id;
Jointure intérieure¶
EMPLOYEE_NAME | DEPARTMENT_NAME |
---|---|
John | HR |
Jorge | Sales |
Kwaku | Sales |
Liu | Sales |
Mateo | Engineering |
Nikki | Marketing |
Paulo | Marketing |
Richard | Marketing |
Sofía | Engineering |
Jointure gauche¶
EMPLOYEE_NAME |
DEPARTMENT_NAME |
---|---|
Carlos |
null |
John |
HR |
Jorge |
Sales |
Kwaku |
Sales |
Liu |
Sales |
Mateo |
Engineering |
Nikki |
Marketing |
Paulo |
Marketing |
Richard |
Marketing |
Saanvi |
null |
Shirley |
null |
Sofía |
Engineering |
Zhang |
null |
Jointure droite¶
DEPARTMENT_NAME |
MANAGER_NAME |
---|---|
HR |
Carlos |
Sales |
John |
Engineering |
Jorge |
Marketing |
Kwaku |
null |
Liu |
null |
Mateo |
null |
Nikki |
null |
Paulo |
null |
Richard |
null |
Saanvi |
null |
Shirley |
null |
Sofía |
null |
Zhang |
Jointure complète¶
EMPLOYEE_NAME |
DEPARTMENT_NAME |
---|---|
Carlos |
null |
John |
HR |
Jorge |
Sales |
Kwaku |
Sales |
Liu |
Sales |
Mateo |
Engineering |
Nikki |
Marketing |
Paulo |
Marketing |
Richard |
Marketing |
Saanvi |
null |
Shirley |
null |
Sofía |
Engineering |
Zhang |
null |
Code de sortie :¶
CREATE TABLE employee (
id INT,
name VARCHAR(20),
manager_id INT
)
COMMENT = '{ "origin": "sf_sc", "name": "snowconvert", "version": { "major": 0, "minor": 0, "patch": "0" }, "attributes": { "component": "redshift", "convertedOn": "11/05/2024", "domain": "test" }}';
INSERT INTO employee (id, name, manager_id) VALUES
(100, 'Carlos', null),
(101, 'John', 100),
(102, 'Jorge', 101),
(103, 'Kwaku', 101),
(110, 'Liu', 101),
(106, 'Mateo', 102),
(110, 'Nikki', 103),
(104, 'Paulo', 103),
(105, 'Richard', 103),
(120, 'Saanvi', 104),
(200, 'Shirley', 104),
(201, 'Sofía', 102),
(205, 'Zhang', 104);
CREATE TABLE department (
id INT,
name VARCHAR(50),
manager_id INT
)
COMMENT = '{ "origin": "sf_sc", "name": "snowconvert", "version": { "major": 0, "minor": 0, "patch": "0" }, "attributes": { "component": "redshift", "convertedOn": "11/05/2024", "domain": "test" }}';
INSERT INTO department (id, name, manager_id) VALUES
(1, 'HR', 100),
(2, 'Sales', 101),
(3, 'Engineering', 102),
(4, 'Marketing', 103);
SELECT e.name AS employee_name, d.name AS department_name
FROM
employee e
INNER JOIN
department d ON e.manager_id = d.manager_id;
SELECT e.name AS employee_name, d.name AS department_name
FROM
employee e
LEFT JOIN
department d ON e.manager_id = d.manager_id;
SELECT d.name AS department_name, e.name AS manager_name
FROM
department d
RIGHT JOIN
employee e ON d.manager_id = e.id;
SELECT e.name AS employee_name, d.name AS department_name
FROM
employee e
FULL JOIN
department d ON e.manager_id = d.manager_id;
Jointure intérieure¶
EMPLOYEE_NAME |
DEPARTMENT_NAME |
---|---|
John |
HR |
Jorge |
Sales |
Kwaku |
Sales |
Liu |
Sales |
Mateo |
Engineering |
Nikki |
Marketing |
Paulo |
Marketing |
Richard |
Marketing |
Sofía |
Engineering |
Jointure gauche¶
EMPLOYEE_NAME |
DEPARTMENT_NAME |
---|---|
Carlos |
null |
John |
HR |
Jorge |
Sales |
Kwaku |
Sales |
Liu |
Sales |
Mateo |
Engineering |
Nikki |
Marketing |
Paulo |
Marketing |
Richard |
Marketing |
Saanvi |
null |
Shirley |
null |
Sofía |
Engineering |
Zhang |
null |
Jointure droite¶
DEPARTMENT_NAME |
MANAGER_NAME |
---|---|
HR |
Carlos |
Sales |
John |
Engineering |
Jorge |
Marketing |
Kwaku |
null |
Liu |
null |
Mateo |
null |
Nikki |
null |
Paulo |
null |
Richard |
null |
Saanvi |
null |
Shirley |
null |
Sofía |
null |
Zhang |
Jointure complète¶
EMPLOYEE_NAME |
DEPARTMENT_NAME |
---|---|
Carlos |
null |
John |
HR |
Jorge |
Sales |
Kwaku |
Sales |
Liu |
Sales |
Mateo |
Engineering |
Nikki |
Marketing |
Paulo |
Marketing |
Richard |
Marketing |
Saanvi |
null |
Shirley |
null |
Sofía |
Engineering |
Zhang |
null |
Clause pivot¶
Note
Les alias de colonne ne peuvent pas être utilisés dans la clause IN de la requête PIVOT dans Snowflake.
Code d’entrée :¶
SELECT *
FROM
(SELECT e.manager_id, d.name AS department, e.id AS employee_id
FROM employee e
JOIN department d ON e.manager_id = d.manager_id) AS SourceTable
PIVOT
(
COUNT(employee_id)
FOR department IN ('HR', 'Sales', 'Engineering', 'Marketing')
) AS PivotTable;
MANAGER_ID |
“HR” |
Ventes |
Ingénierie |
Marketing |
---|---|---|---|---|
100 |
1 |
0 |
0 |
0 |
101 |
0 |
3 |
0 |
0 |
102 |
0 |
0 |
2 |
0 |
103 |
0 |
0 |
0 |
3 |
Code de sortie :¶
SELECT *
FROM
(SELECT e.manager_id, d.name AS department, e.id AS employee_id
FROM
employee e
JOIN
department d ON e.manager_id = d.manager_id) AS SourceTable
PIVOT
(
COUNT(employee_id)
FOR department IN ('HR', 'Sales', 'Engineering', 'Marketing')
) AS PivotTable;
MANAGER_ID |
“HR” |
Ventes |
Ingénierie |
Marketing |
---|---|---|---|---|
100 |
1 |
0 |
0 |
0 |
101 |
0 |
3 |
0 |
0 |
102 |
0 |
0 |
2 |
0 |
103 |
0 |
0 |
0 |
3 |
Clause Unpivot¶
Note
Les alias de colonne ne peuvent pas être utilisés dans la clause IN de la requête UNPIVOT dans Snowflake.
Code d’entrée :¶
CREATE TABLE count_by_color (quality VARCHAR, red INT, green INT, blue INT);
INSERT INTO count_by_color VALUES ('high', 15, 20, 7);
INSERT INTO count_by_color VALUES ('normal', 35, NULL, 40);
INSERT INTO count_by_color VALUES ('low', 10, 23, NULL);
SELECT *
FROM (SELECT red, green, blue FROM count_by_color) UNPIVOT (
cnt FOR color IN (red, green, blue)
);
SELECT *
FROM (SELECT red, green, blue FROM count_by_color) UNPIVOT (
cnt FOR color IN (red r, green as g, blue)
);
COLOR |
CNT |
---|---|
RED |
15 |
RED |
35 |
RED |
10 |
GREEN |
20 |
GREEN |
23 |
BLUE |
7 |
BLUE |
40 |
Code de sortie :¶
CREATE TABLE count_by_color (quality VARCHAR, red INT, green INT, blue INT)
COMMENT = '{ "origin": "sf_sc", "name": "snowconvert", "version": { "major": 0, "minor": 0, "patch": "0" }, "attributes": { "component": "redshift", "convertedOn": "11/05/2024", "domain": "test" }}';
INSERT INTO count_by_color
VALUES ('high', 15, 20, 7);
INSERT INTO count_by_color
VALUES ('normal', 35, NULL, 40);
INSERT INTO count_by_color
VALUES ('low', 10, 23, NULL);
SELECT *
FROM (SELECT red, green, blue FROM
count_by_color
) UNPIVOT (
cnt FOR color IN (red, green, blue)
);
SELECT *
FROM (SELECT red, green, blue FROM
count_by_color
) UNPIVOT (
cnt FOR color IN (red
!!!RESOLVE EWI!!! /*** SSC-EWI-RS0005 - COLUMN ALIASES CANNOT BE USED IN THE IN CLAUSE OF THE PIVOT/UNPIVOT QUERY IN SNOWFLAKE. ***/!!!
r, green
!!!RESOLVE EWI!!! /*** SSC-EWI-RS0005 - COLUMN ALIASES CANNOT BE USED IN THE IN CLAUSE OF THE PIVOT/UNPIVOT QUERY IN SNOWFLAKE. ***/!!!
as g, blue)
);
COLOR |
CNT |
---|---|
RED |
15 |
GREEN |
20 |
BLUE |
7 |
RED |
35 |
BLUE |
40 |
RED |
10 |
GREEN |
23 |
EWIs connexes¶
SSC-EWI-RS0005 : les alias de colonne ne peuvent pas être utilisés dans la clause IN de la requête PIVOT/UNPIVOT dans Snowflake.
Clause GROUP BY¶
Description¶
La clause GROUP BY
identifie les colonnes de regroupement de la requête. Les colonnes de regroupement doivent être déclarées lorsque la requête calcule des agrégats avec des fonctions standard telles que SUM
, AVG
, et COUNT
. (Référence linguistique Redshift SQL clause GROUP BY)
La clause GROUP BY est entièrement prise en charge dans Snowflake.
Grammar Syntax
GROUP BY group_by_clause [, ...]
group_by_clause := {
expr |
GROUPING SETS ( () | group_by_clause [, ...] ) |
ROLLUP ( expr [, ...] ) |
CUBE ( expr [, ...] )
}
Sample Source Patterns
Regroupement des ensembles
Input Code:
CREATE TABLE employee (
id INT,
name VARCHAR(20),
manager_id INT
);
INSERT INTO employee(id, name, manager_id) VALUES
(100, 'Carlos', null),
(101, 'John', 100),
(102, 'Jorge', 101),
(103, 'Kwaku', 101),
(110, 'Liu', 101),
(106, 'Mateo', 102),
(110, 'Nikki', 103),
(104, 'Paulo', 103),
(105, 'Richard', 103),
(120, 'Saanvi', 104),
(200, 'Shirley', 104),
(201, 'Sofía', 102),
(205, 'Zhang', 104);
SELECT
manager_id,
COUNT(id) AS total_employees
FROM employee
GROUP BY GROUPING SETS
((manager_id), ())
ORDER BY manager_id;
MANAGER_ID |
TOTAL_EMPLOYEES |
---|---|
100 |
1 |
101 |
3 |
102 |
2 |
103 |
3 |
104 |
3 |
null |
1 |
null |
13 |
Output Code:
CREATE TABLE employee (
id INT,
name VARCHAR(20),
manager_id INT
)
COMMENT = '{ "origin": "sf_sc", "name": "snowconvert", "version": { "major": 0, "minor": 0, "patch": "0" }, "attributes": { "component": "redshift", "convertedOn": "11/05/2024", "domain": "test" }}';
INSERT INTO employee (id, name, manager_id) VALUES
(100, 'Carlos', null),
(101, 'John', 100),
(102, 'Jorge', 101),
(103, 'Kwaku', 101),
(110, 'Liu', 101),
(106, 'Mateo', 102),
(110, 'Nikki', 103),
(104, 'Paulo', 103),
(105, 'Richard', 103),
(120, 'Saanvi', 104),
(200, 'Shirley', 104),
(201, 'Sofía', 102),
(205, 'Zhang', 104);
SELECT
manager_id,
COUNT(id) AS total_employees
FROM
employee
GROUP BY GROUPING SETS
((manager_id), ())
ORDER BY manager_id;
MANAGER_ID |
TOTAL_EMPLOYEES |
---|---|
100 |
1 |
101 |
3 |
102 |
2 |
103 |
3 |
104 |
3 |
null |
1 |
null |
13 |
Grouper par cube
Input Code:
SELECT
manager_id,
COUNT(id) AS total_employees
FROM
employee
GROUP BY CUBE(manager_id)
ORDER BY manager_id;
MANAGER_ID |
TOTAL_EMPLOYEES |
---|---|
100 |
1 |
101 |
3 |
102 |
2 |
103 |
3 |
104 |
3 |
null |
1 |
null |
13 |
Output Code:
SELECT
manager_id,
COUNT(id) AS total_employees
FROM
employee
GROUP BY CUBE(manager_id)
ORDER BY manager_id;
MANAGER_ID |
TOTAL_EMPLOYEES |
---|---|
100 |
1 |
101 |
3 |
102 |
2 |
103 |
3 |
104 |
3 |
null |
1 |
null |
13 |
Grouper par rollup
Input Code:
SELECT
manager_id,
COUNT(id) AS total_employees
FROM
employee
GROUP BY ROLLUP(manager_id)
ORDER BY manager_id;
MANAGER_ID |
TOTAL_EMPLOYEES |
---|---|
100 |
1 |
101 |
3 |
102 |
2 |
103 |
3 |
104 |
3 |
null |
1 |
null |
13 |
Output Code:
SELECT
manager_id,
COUNT(id) AS total_employees
FROM
employee
GROUP BY ROLLUP(manager_id)
ORDER BY manager_id;
MANAGER_ID |
TOTAL_EMPLOYEES |
---|---|
100 |
1 |
101 |
3 |
102 |
2 |
103 |
3 |
104 |
3 |
null |
1 |
null |
13 |
Related EWIs
Il n’y a pas de problème connu.
Clause HAVING
Description
La clause HAVING
applique une condition au jeu de résultats groupés intermédiaire renvoyé par une requête. (Référence linguistique Redshift SQL clause HAVING)
La clause HAVING est entièrement prise en charge dans Snowflake.
Grammar Syntax¶
[ HAVING condition ]
Modèles d’échantillons de sources¶
Code d’entrée :¶
CREATE TABLE employee (
id INT,
name VARCHAR(20),
manager_id INT
);
INSERT INTO employee(id, name, manager_id) VALUES
(100, 'Carlos', null),
(101, 'John', 100),
(102, 'Jorge', 101),
(103, 'Kwaku', 101),
(110, 'Liu', 101),
(106, 'Mateo', 102),
(110, 'Nikki', 103),
(104, 'Paulo', 103),
(105, 'Richard', 103),
(120, 'Saanvi', 104),
(200, 'Shirley', 104),
(201, 'Sofía', 102),
(205, 'Zhang', 104);
SELECT manager_id, COUNT(id) AS total_employees
FROM
employee
GROUP BY manager_id
HAVING COUNT(id) > 2
ORDER BY manager_id;
MANAGER_ID |
TOTAL_EMPLOYEES |
---|---|
101 |
3 |
103 |
3 |
104 |
3 |
Code de sortie :¶
CREATE TABLE employee (
id INT,
name VARCHAR(20),
manager_id INT
)
COMMENT = '{ "origin": "sf_sc", "name": "snowconvert", "version": { "major": 0, "minor": 0, "patch": "0" }, "attributes": { "component": "redshift", "convertedOn": "11/05/2024", "domain": "test" }}';
INSERT INTO employee (id, name, manager_id) VALUES
(100, 'Carlos', null),
(101, 'John', 100),
(102, 'Jorge', 101),
(103, 'Kwaku', 101),
(110, 'Liu', 101),
(106, 'Mateo', 102),
(110, 'Nikki', 103),
(104, 'Paulo', 103),
(105, 'Richard', 103),
(120, 'Saanvi', 104),
(200, 'Shirley', 104),
(201, 'Sofía', 102),
(205, 'Zhang', 104);
SELECT manager_id, COUNT(id) AS total_employees
FROM
employee
GROUP BY manager_id
HAVING COUNT(id) > 2
ORDER BY manager_id;
MANAGER_ID |
TOTAL_EMPLOYEES |
---|---|
101 |
3 |
103 |
3 |
104 |
3 |
EWIs connexes¶
Il n’y a pas de problème connu.
Clause ORDER BY¶
Description¶
La clause ORDER BY
permet de trier le jeu de résultats d’une requête. (Référence linguistique Redshift SQL clause Order By)
La clause ORDER BY est entièrement prise en charge dans Snowflake.
Grammar Syntax
[ ORDER BY expression [ ASC | DESC ] ]
[ NULLS FIRST | NULLS LAST ]
[ LIMIT { count | ALL } ]
[ OFFSET start ]
Sample Source Patterns
Input Code:
CREATE TABLE employee (
id INT,
name VARCHAR(20),
manager_id INT,
salary DECIMAL(10, 2)
);
INSERT INTO employee (id, name, manager_id, salary) VALUES
(100, 'Carlos', NULL, 120000.00),
(101, 'John', 100, 90000.00),
(102, 'Jorge', 101, 95000.00),
(103, 'Kwaku', 101, 105000.00),
(104, 'Paulo', 102, 110000.00),
(105, 'Richard', 102, 85000.00),
(106, 'Mateo', 103, 95000.00),
(107, 'Liu', 103, 108000.00),
(108, 'Zhang', 104, 95000.00);
SELECT id, name, manager_id, salary
FROM employee
ORDER BY salary DESC NULLS LAST, name ASC NULLS FIRST
LIMIT 5
OFFSET 2;
ID |
NAME |
MANAGER_ID |
SALARY |
---|---|---|---|
107 |
Liu |
103 |
108000,00 |
103 |
Kwaku |
101 |
105000,00 |
102 |
Jorge |
101 |
95000,00 |
106 |
Mateo |
103 |
95000,00 |
108 |
Zhang |
104 |
95000,00 |
Output Code:
CREATE TABLE employee (
id INT,
name VARCHAR(20),
manager_id INT,
salary DECIMAL(10, 2)
)
COMMENT = '{ "origin": "sf_sc", "name": "snowconvert", "version": { "major": 0, "minor": 0, "patch": "0" }, "attributes": { "component": "redshift", "convertedOn": "11/05/2024", "domain": "test" }}';
INSERT INTO employee (id, name, manager_id, salary) VALUES
(100, 'Carlos', NULL, 120000.00),
(101, 'John', 100, 90000.00),
(102, 'Jorge', 101, 95000.00),
(103, 'Kwaku', 101, 105000.00),
(104, 'Paulo', 102, 110000.00),
(105, 'Richard', 102, 85000.00),
(106, 'Mateo', 103, 95000.00),
(107, 'Liu', 103, 108000.00),
(108, 'Zhang', 104, 95000.00);
SELECT id, name, manager_id, salary
FROM
employee
ORDER BY salary DESC NULLS LAST, name ASC NULLS FIRST
LIMIT 5
OFFSET 2;
ID |
NAME |
MANAGER_ID |
SALARY |
---|---|---|---|
107 |
Liu |
103 |
108000,00 |
103 |
Kwaku |
101 |
105000,00 |
102 |
Jorge |
101 |
95000,00 |
106 |
Mateo |
103 |
95000,00 |
108 |
Zhang |
104 |
95000,00 |
Related EWIs
Il n’y a pas de problème connu.
Clause QUALIFY
Description
La clause QUALIFY
filtre les résultats d’une fonction de fenêtre précédemment calculée en fonction des conditions de recherche spécifiées par l’utilisateur. Vous pouvez utiliser la clause pour appliquer des conditions de filtre au résultat d’une fonction de fenêtre sans utiliser de sous-requête. (Référence linguistique Redshift SQL clause QUALIFY)
La clauseQUALIFY est prise en charge dans Snowflake.
Grammar Syntax¶
QUALIFY condition
Modèles d’échantillons de sources¶
Code d’entrée :¶
CREATE TABLE store_sales
(
ss_sold_date DATE,
ss_sold_time TIME,
ss_item TEXT,
ss_sales_price FLOAT
);
INSERT INTO store_sales VALUES ('2022-01-01', '09:00:00', 'Product 1', 100.0),
('2022-01-01', '11:00:00', 'Product 2', 500.0),
('2022-01-01', '15:00:00', 'Product 3', 20.0),
('2022-01-01', '17:00:00', 'Product 4', 1000.0),
('2022-01-01', '18:00:00', 'Product 5', 30.0),
('2022-01-02', '10:00:00', 'Product 6', 5000.0),
('2022-01-02', '16:00:00', 'Product 7', 5.0);
SELECT *
FROM store_sales ss
WHERE ss_sold_time > time '12:00:00'
QUALIFY row_number()
OVER (PARTITION BY ss_sold_date ORDER BY ss_sales_price DESC) <= 2;
SS_SOLD_DATE |
SS_SOLD_TIME |
SS_ITEM |
SS_SALES_PRICE |
---|---|---|---|
2022-01-01 |
17:00:00 |
Produit 4 |
1000 |
2022-01-01 |
18:00:00 |
Produit 5 |
30 |
2022-01-02 |
16:00:00 |
Produit 7 |
5 |
Code de sortie :¶
CREATE TABLE store_sales
(
ss_sold_date DATE,
ss_sold_time TIME,
ss_item TEXT,
ss_sales_price FLOAT
)
COMMENT = '{ "origin": "sf_sc", "name": "snowconvert", "version": { "major": 0, "minor": 0, "patch": "0" }, "attributes": { "component": "redshift", "convertedOn": "11/05/2024", "domain": "test" }}';
INSERT INTO store_sales
VALUES ('2022-01-01', '09:00:00', 'Product 1', 100.0),
('2022-01-01', '11:00:00', 'Product 2', 500.0),
('2022-01-01', '15:00:00', 'Product 3', 20.0),
('2022-01-01', '17:00:00', 'Product 4', 1000.0),
('2022-01-01', '18:00:00', 'Product 5', 30.0),
('2022-01-02', '10:00:00', 'Product 6', 5000.0),
('2022-01-02', '16:00:00', 'Product 7', 5.0);
SELECT *
FROM
store_sales ss
WHERE ss_sold_time > time '12:00:00'
QUALIFY row_number()
OVER (PARTITION BY ss_sold_date ORDER BY ss_sales_price DESC) <= 2;
SS_SOLD_DATE |
SS_SOLD_TIME |
SS_ITEM |
SS_SALES_PRICE |
---|---|---|---|
2022-01-02 |
16:00:00 |
Produit 7 |
5 |
2022-01-01 |
17:00:00 |
Produit 4 |
1000 |
2022-01-01 |
18:00:00 |
Produit 5 |
30 |
EWIs connexes¶
Il n’y a pas de problème connu.
Liste SELECT¶
Description¶
La liste SELECT nomme les colonnes, les fonctions et les expressions que vous souhaitez que la requête renvoie. La liste représente la sortie de la requête. (Référence linguistique (Redshift SQL liste SELECT)
Les options de démarrage des requêtes sont entièrement prises en charge dans Snowflake. Gardez à l’esprit que dans Snowflake, les options DISTINCT
et ALL
doivent être placées au début de la requête.
Note
Dans Redshift, si votre application autorise les clés étrangères ou les clés primaires non valides, cela peut amener les requêtes à renvoyer des résultats incorrects. Par exemple, une requête SELECT DISTINCT pourrait renvoyer des lignes en double si la colonne de clé primaire ne contient pas toutes les valeurs uniques. (Référence linguistique Redshift SQL liste SELECT)
Grammar Syntax¶
SELECT
[ TOP number ]
[ ALL | DISTINCT ] * | expression [ AS column_alias ] [, ...]
Modèles d’échantillons de sources¶
Clause Top¶
Code d’entrée :¶
CREATE TABLE employee (
id INT,
name VARCHAR(20),
manager_id INT
);
INSERT INTO employee(id, name, manager_id) VALUES
(100, 'Carlos', null),
(101, 'John', 100),
(102, 'Jorge', 101),
(103, 'Kwaku', 101),
(110, 'Liu', 101),
(106, 'Mateo', 102),
(110, 'Nikki', 103),
(104, 'Paulo', 103),
(105, 'Richard', 103),
(120, 'Saanvi', 104),
(200, 'Shirley', 104),
(201, 'Sofía', 102),
(205, 'Zhang', 104);
SELECT TOP 5 id, name, manager_id
FROM employee;
ID |
NAME |
MANAGER_ID |
---|---|---|
100 |
Carlos |
null |
101 |
John |
100 |
102 |
Jorge |
101 |
103 |
Kwaku |
101 |
110 |
Liu |
101 |
Code de sortie :¶
CREATE TABLE employee (
id INT,
name VARCHAR(20),
manager_id INT
)
COMMENT = '{ "origin": "sf_sc", "name": "snowconvert", "version": { "major": 0, "minor": 0, "patch": "0" }, "attributes": { "component": "redshift", "convertedOn": "11/05/2024", "domain": "test" }}';
INSERT INTO employee (id, name, manager_id) VALUES
(100, 'Carlos', null),
(101, 'John', 100),
(102, 'Jorge', 101),
(103, 'Kwaku', 101),
(110, 'Liu', 101),
(106, 'Mateo', 102),
(110, 'Nikki', 103),
(104, 'Paulo', 103),
(105, 'Richard', 103),
(120, 'Saanvi', 104),
(200, 'Shirley', 104),
(201, 'Sofía', 102),
(205, 'Zhang', 104);
SELECT TOP 5 id, name, manager_id
FROM
employee;
ID |
NAME |
MANAGER_ID |
---|---|---|
100 |
Carlos |
null |
101 |
John |
100 |
102 |
Jorge |
101 |
103 |
Kwaku |
101 |
110 |
Liu |
101 |
ALL¶
Code d’entrée :¶
SELECT ALL manager_id
FROM employee;
MANAGER_ID |
---|
null |
100 |
101 |
101 |
101 |
102 |
103 |
103 |
103 |
104 |
104 |
102 |
104 |
Code de sortie :¶
SELECT ALL manager_id
FROM
employee;
MANAGER_ID |
---|
null |
100 |
101 |
101 |
101 |
102 |
103 |
103 |
103 |
104 |
104 |
102 |
104 |
DISTINCT¶
Code d’entrée :¶
SELECT DISTINCT manager_id
FROM employee;
MANAGER_ID |
---|
null |
100 |
101 |
102 |
103 |
104 |
Code de sortie :¶
SELECT DISTINCT manager_id
FROM
employee;
MANAGER_ID |
---|
null |
100 |
101 |
102 |
103 |
104 |
EWIs connexes¶
Il n’y a pas de problème connu.
UNION, INTERSECT et EXCEPT¶
Description¶
Les opérateurs Set UNION
, INTERSECT
et EXCEPT
sont utilisés pour comparer et fusionner les résultats de deux expressions de requête distinctes. (Référence linguistique Redshift SQL opérateurs Set)
Les opérateurs Set sont entièrement pris en charge dans Snowflake.
Grammar Syntax
query
{ UNION [ ALL ] | INTERSECT | EXCEPT | MINUS }
query
Sample Source Patterns
Input Code:
SELECT id, name, manager_id
FROM
employee
WHERE manager_id = 101
UNION
SELECT id, name, manager_id
FROM
employee
WHERE manager_id = 102
UNION ALL
SELECT id, name, manager_id
FROM
employee
WHERE manager_id = 101
INTERSECT
SELECT id, name, manager_id
FROM
employee
WHERE manager_id = 103
EXCEPT
SELECT id, name, manager_id
FROM
employee
WHERE manager_id = 104;
ID |
NAME |
MANAGER_ID |
---|---|---|
103 |
Kwaku |
101 |
110 |
Liu |
101 |
102 |
Jorge |
101 |
106 |
Mateo |
102 |
201 |
Sofía |
102 |
Output Code:
SELECT id, name, manager_id
FROM
employee
WHERE manager_id = 101
UNION
SELECT id, name, manager_id
FROM
employee
WHERE manager_id = 102
UNION ALL
SELECT id, name, manager_id
FROM
employee
WHERE manager_id = 101
INTERSECT
SELECT id, name, manager_id
FROM
employee
WHERE manager_id = 103
EXCEPT
SELECT id, name, manager_id
FROM
employee
WHERE manager_id = 104;
ID |
NAME |
MANAGER_ID |
---|---|---|
102 |
Jorge |
101 |
103 |
Kwaku |
101 |
110 |
Liu |
101 |
106 |
Mateo |
102 |
201 |
Sofía |
102 |
Related EWIs
Il n’y a pas de problème connu.
Clause WHERE
Description
La clause WHERE
contient des conditions qui joignent des tables ou appliquent des prédicats aux colonnes des tables. (Référence linguistique Redshift SQL clause WHERE )
La clause WHERE est entièrement prise en charge dans Snowflake.
Grammar Syntax¶
[ WHERE condition ]
Modèles d’échantillons de sources¶
Code d’entrée :¶
CREATE TABLE employee (
id INT,
name VARCHAR(20),
manager_id INT
);
INSERT INTO employee(id, name, manager_id) VALUES
(100, 'Carlos', null),
(101, 'John', 100),
(102, 'Jorge', 101),
(103, 'Kwaku', 101),
(110, 'Liu', 101),
(106, 'Mateo', 102),
(110, 'Nikki', 103),
(104, 'Paulo', 103),
(105, 'Richard', 103),
(120, 'Saanvi', 104),
(200, 'Shirley', 104),
(201, 'Sofía', 102),
(205, 'Zhang', 104);
SELECT id, name, manager_id
FROM employee
WHERE name LIKE 'J%';
ID |
NAME |
MANAGER_ID |
---|---|---|
101 |
John |
100 |
102 |
Jorge |
101 |
Code de sortie :¶
CREATE TABLE employee (
id INT,
name VARCHAR(20),
manager_id INT
)
COMMENT = '{ "origin": "sf_sc", "name": "snowconvert", "version": { "major": 0, "minor": 0, "patch": "0" }, "attributes": { "component": "redshift", "convertedOn": "11/05/2024", "domain": "test" }}';
INSERT INTO employee (id, name, manager_id) VALUES
(100, 'Carlos', null),
(101, 'John', 100),
(102, 'Jorge', 101),
(103, 'Kwaku', 101),
(110, 'Liu', 101),
(106, 'Mateo', 102),
(110, 'Nikki', 103),
(104, 'Paulo', 103),
(105, 'Richard', 103),
(120, 'Saanvi', 104),
(200, 'Shirley', 104),
(201, 'Sofía', 102),
(205, 'Zhang', 104);
SELECT id, name, manager_id
FROM
employee
WHERE name LIKE 'J%' ESCAPE '\\';
ID |
NAME |
MANAGER_ID |
---|---|---|
101 |
John |
100 |
102 |
Jorge |
101 |
EWIs connexes¶
Il n’y a pas de problème connu.
Clause WITH¶
Description¶
Une clause WITH
est une clause facultative qui précède la liste SELECT dans une requête. La clause WITH
définit une ou plusieurs common_table_expressions. Chaque expression de table commune (CTE) définit une table temporaire, qui est similaire à la définition d’une vue. Vous pouvez faire référence à ces tables temporaires dans la clause FROM
. (Référence linguistique Redshift SQL clause WITH)
La clause WITH est entièrement prise en charge dans Snowflake.
Grammar Syntax
[ WITH [RECURSIVE] common_table_expression [, common_table_expression , ...] ]
--Where common_table_expression can be either non-recursive or recursive.
--Following is the non-recursive form:
CTE_table_name [ ( column_name [, ...] ) ] AS ( query )
--Following is the recursive form of common_table_expression:
CTE_table_name (column_name [, ...] ) AS ( recursive_query )
Sample Source Patterns
Forme récursive
Input Code:
CREATE TABLE employee (
id INT,
name VARCHAR(20),
manager_id INT
);
INSERT INTO employee(id, name, manager_id) VALUES
(100, 'Carlos', null),
(101, 'John', 100),
(102, 'Jorge', 101),
(103, 'Kwaku', 101),
(110, 'Liu', 101),
(106, 'Mateo', 102),
(110, 'Nikki', 103),
(104, 'Paulo', 103),
(105, 'Richard', 103),
(120, 'Saanvi', 104),
(200, 'Shirley', 104),
(201, 'Sofía', 102),
(205, 'Zhang', 104);
WITH RECURSIVE john_org(id, name, manager_id, level) AS
( SELECT id, name, manager_id, 1 AS level
FROM employee
WHERE name = 'John'
UNION ALL
SELECT e.id, e.name, e.manager_id, level + 1 AS next_level
FROM employee e, john_org j
WHERE e.manager_id = j.id and level < 4
)
SELECT DISTINCT id, name, manager_id FROM john_org ORDER BY manager_id;
ID |
NAME |
MANAGER_ID |
---|---|---|
101 |
John |
100 |
110 |
Liu |
101 |
102 |
Jorge |
101 |
103 |
Kwaku |
101 |
201 |
Sofía |
102 |
106 |
Mateo |
102 |
105 |
Richard |
103 |
104 |
Paulo |
103 |
110 |
Nikki |
103 |
205 |
Zhang |
104 |
120 |
Saanvi |
104 |
200 |
Shirley |
104 |
Output Code:
CREATE TABLE employee (
id INT,
name VARCHAR(20),
manager_id INT
)
COMMENT = '{ "origin": "sf_sc", "name": "snowconvert", "version": { "major": 0, "minor": 0, "patch": "0" }, "attributes": { "component": "redshift", "convertedOn": "11/05/2024", "domain": "test" }}';
INSERT INTO employee (id, name, manager_id) VALUES
(100, 'Carlos', null),
(101, 'John', 100),
(102, 'Jorge', 101),
(103, 'Kwaku', 101),
(110, 'Liu', 101),
(106, 'Mateo', 102),
(110, 'Nikki', 103),
(104, 'Paulo', 103),
(105, 'Richard', 103),
(120, 'Saanvi', 104),
(200, 'Shirley', 104),
(201, 'Sofía', 102),
(205, 'Zhang', 104);
WITH RECURSIVE john_org(id, name, manager_id, level) AS
( SELECT id, name, manager_id, 1 AS level
FROM
employee
WHERE
RTRIM( name) = RTRIM( 'John')
UNION ALL
SELECT e.id, e.name, e.manager_id, level + 1 AS next_level
FROM
employee e,
john_org j
WHERE e.manager_id = j.id and level < 4
)
SELECT DISTINCT id, name, manager_id FROM
john_org
ORDER BY manager_id;
ID |
NAME |
MANAGER_ID |
---|---|---|
101 |
John |
100 |
102 |
Jorge |
101 |
103 |
Kwaku |
101 |
110 |
Liu |
101 |
106 |
Mateo |
102 |
201 |
Sofía |
102 |
110 |
Nikki |
103 |
104 |
Paulo |
103 |
105 |
Richard |
103 |
120 |
Saanvi |
104 |
200 |
Shirley |
104 |
205 |
Zhang |
104 |
Forme non récursive
Input Code:
WITH ManagerHierarchy AS (
SELECT id AS employee_id, name AS employee_name, manager_id
FROM employee
)
SELECT e.employee_name AS employee, m.employee_name AS manager
FROM ManagerHierarchy e
LEFT JOIN ManagerHierarchy m ON e.manager_id = m.employee_id;
EMPLOYEE |
MANAGER |
---|---|
Carlos |
null |
John |
Carlos |
Jorge |
John |
Kwaku |
John |
Liu |
John |
Mateo |
Jorge |
Sofía |
Jorge |
Nikki |
Kwaku |
Paulo |
Kwaku |
Richard |
Kwaku |
Saanvi |
Paulo |
Shirley |
Paulo |
Zhang |
Paulo |
Output Code:
WITH ManagerHierarchy AS (
SELECT id AS employee_id, name AS employee_name, manager_id
FROM
employee
)
SELECT e.employee_name AS employee, m.employee_name AS manager
FROM
ManagerHierarchy e
LEFT JOIN
ManagerHierarchy m ON e.manager_id = m.employee_id;
EMPLOYEE |
MANAGER |
---|---|
John |
Carlos |
Jorge |
John |
Kwaku |
John |
Liu |
John |
Mateo |
Jorge |
Sofía |
Jorge |
Nikki |
Kwaku |
Paulo |
Kwaku |
Richard |
Kwaku |
Saanvi |
Paulo |
Shirley |
Paulo |
Zhang |
Paulo |
Carlos |
null |
Related EWIs
Il n’y a pas de problème connu.