SnowConvert: Redshift-Ausdrücke

Ausdruckslisten

Beschreibung

Eine Ausdrucksliste ist eine Kombination von Ausdrücken und kann in Mitgliedschafts- und Vergleichsbedingungen (WHERE-Klauseln) und in GROUP BY-Klauseln erscheinen. (Redshift SQL-Referenz: Ausdruckslisten).

Diese Syntax wird in Snowflake vollständig unterstützt.

Grammatikalische Syntax

 expression , expression , ... | (expression, expression, ...)
Copy

Beispielhafte Quellcode-Muster

Datenkonfiguration

 CREATE TABLE table1 (
    quantity VARCHAR(50),
    fruit VARCHAR(50)
);

CREATE TABLE table2 (
    quantity VARCHAR(50),
    fruit VARCHAR(50)
);

CREATE TABLE table3 (
    id INT,
    name VARCHAR(50),
    quantity INT,
    fruit VARCHAR(50),
    price INT
);

INSERT INTO table1 (quantity, fruit)
VALUES
    ('one', 'apple'),
    ('two', 'banana'),
    ('three', 'cherry');

INSERT INTO table2 (quantity, fruit)
VALUES
    ('one', 'apple'),
    ('two', 'banana'),
    ('four', 'orange');

INSERT INTO table3 (id, name, quantity, fruit, price)
VALUES
    (1, 'Alice', 1, 'apple', 100),
    (2, 'Bob', 5, 'banana', 200),
    (3, 'Charlie', 10, 'cherry', 300),
    (4, 'David', 15, 'orange', 400);
Copy

IN-Klausel.

Eingabecode:
SELECT *
FROM table3
WHERE quantity IN (1, 5, 10);
Copy

ID

NAME

QUANTITY

FRUIT

PRICE

1

Alice

1

apfel

100

2

Bob

5

banana

200

3

Charlie

10

cherry

300

Ausgabecode:
 SELECT *
FROM
    table3
WHERE quantity IN (1, 5, 10);
Copy

ID

NAME

QUANTITY

FRUIT

PRICE

1

Alice

1

apfel

100

2

Bob

5

banana

200

3

Charlie

10

cherry

300

Vergleiche

Input Code:
 SELECT *
FROM table3
WHERE (quantity, fruit) = (1, 'apple');
Copy

ID

NAME

QUANTITY

FRUIT

PRICE

1

Alice

1

apfel

100

Output Code:
 SELECT *
FROM
    table3
WHERE (quantity, fruit) = (1, 'apple');
Copy

ID

NAME

QUANTITY

FRUIT

PRICE

1

Alice

1

apfel

100

Bemerkung

Ausdruckslistenvergleiche mit den folgenden Operatoren können sich in Snowflake anders verhalten. (<, <= , >, >=). Diese Operatoren werden in logische AND-Operationen umgewandelt, um eine vollständige Äquivalenz in Snowflake zu erreichen.

Eingabecode:

 SELECT (1,8,20) < (2,2,0) as r1,
       (1,null,2) > (1,0,8) as r2,
       (null,null,2) < (1,0,8) as r3,
       (1,0,null) <= (1,1,0) as r4,
       (1,1,0) >= (1,1,20) as r5;
Copy

R1

R2

R3

R4

R5

FALSE

FALSE

NULL

NULL

FALSE

Ausgabecode:

 SELECT
    (1 < 2
    AND 8 < 2
    AND 20 < 0) as r1,
    (1 > 1
    AND null > 0
    AND 2 > 8) as r2,
    (null < 1
    AND null < 0
    AND 2 < 8) as r3,
    (1 <= 1
    AND 0 <= 1
    AND null <= 0) as r4,
    (1 >= 1
    AND 1 >= 1
    AND 0 >= 20) as r5;
Copy

R1

R2

R3

R4

R5

FALSE

FALSE

NULL

NULL

FALSE

Verschachtelte Tupel

Eingabecode:
 SELECT *
FROM table3
WHERE (quantity, fruit) IN ((1, 'apple'), (5, 'banana'), (10, 'cherry'));
Copy

ID

NAME

QUANTITY

FRUIT

PRICE

1

Alice

1

apfel

100

2

Bob

5

banana

200

3

Charlie

10

cherry

300

Ausgabecode
 SELECT *
FROM
    table3
WHERE (quantity, fruit) IN ((1, 'apple'), (5, 'banana'), (10, 'cherry'));
Copy

ID

NAME

QUANTITY

FRUIT

PRICE

1

Alice

1

apfel

100

2

Bob

5

banana

200

3

Charlie

10

cherry

300

CASE-Anweisung

Eingabecode:
 SELECT
    CASE
        WHEN quantity IN (1, 5, 10) THEN 'Found'
        ELSE 'Not Found'
    END AS result
FROM table3;
Copy

RESULT

Gefunden

Gefunden

Gefunden

Nicht gefunden

Nicht gefunden

Nicht gefunden

Ausgabecode
 SELECT
    CASE
        WHEN quantity IN (1, 5, 10) THEN 'Found'
        ELSE 'Not Found'
    END AS result
FROM
    table3;
Copy

RESULT

Gefunden

Gefunden

Gefunden

Nicht gefunden

Nicht gefunden

Nicht gefunden

Mehrere Ausdrücke

Eingabecode:
 SELECT *
FROM table3
WHERE (quantity, fruit) IN ((1, 'apple'), (5, 'banana'), (10, 'cherry'))
  AND price IN (100, 200, 300);
Copy

ID

NAME

QUANTITY

FRUIT

PRICE

1

Alice

1

apfel

100

2

Bob

5

banana

200

3

Charlie

10

cherry

300

Ausgabecode
 SELECT *
FROM
    table3
WHERE (quantity, fruit) IN ((1, 'apple'), (5, 'banana'), (10, 'cherry'))
  AND price IN (100, 200, 300);
Copy

ID

NAME

QUANTITY

FRUIT

PRICE

1

Alice

1

apfel

100

2

Bob

5

banana

200

3

Charlie

10

cherry

300

Joins

Eingabecode:
 SELECT *
FROM table1 t1
JOIN table2 t2
    ON (t1.quantity, t1.fruit) = (t2.quantity, t2.fruit)
WHERE t1.quantity = 'one' AND t1.fruit = 'apple';
Copy

QUANTITY

FRUIT

QUANTITY

FRUIT

ein/e

apfel

ein/e

apfel

Ausgabecode
 SELECT *
FROM
table1 t1
JOIN
        table2 t2
    ON (t1.quantity, t1.fruit) = (t2.quantity, t2.fruit)
WHERE t1.quantity = 'one' AND t1.fruit = 'apple';
Copy

QUANTITY

FRUIT

QUANTITY

FRUIT

ein/e

apfel

ein/e

apfel

Bekannte Probleme

Es wurden keine Probleme gefunden.

Zusammengesetzte Ausdrücke

Beschreibung

Ein zusammengesetzter Ausdruck ist eine Reihe von einfachen Ausdrücken, die durch arithmetische Operatoren verbunden sind. Ein einfacher Ausdruck, der in einem zusammengesetzten Ausdruck verwendet wird, muss einen numerischen Wert zurückgeben. (RedShift SQL-Referenz: Zusammengesetzte Ausdrücke)

Grammatikalische Syntax

 expression operator {expression | (compound_expression)}
Copy

Umrechnungstabelle

RedshiftSnowflakeComments
|| (Concatenation)||Fully supported by Snowflake

Beispielhafte Quellcode-Muster

Eingabecode:

 CREATE TABLE concatenation_demo (
    col1 VARCHAR(20),
    col2 INTEGER,
    col3 DATE
);

INSERT INTO concatenation_demo (col1, col2, col3) VALUES
('Hello', 42, '2023-12-01'),
(NULL, 0, '2024-01-01'),
('Redshift', -7, NULL);

SELECT 
    col1 || ' has number ' || col2 AS concat_string_number
FROM concatenation_demo;

SELECT 
    col1 || ' on ' || col3 AS concat_string_date
FROM concatenation_demo;

SELECT
    COALESCE(col1, 'Unknown') || ' with number ' || COALESCE(CAST(col2 AS VARCHAR), 'N/A') AS concat_with_null_handling
FROM concatenation_demo;
Copy

concat_string_number

Hallo hat die Nummer 42

<NULL>

Redshift hat die Nummer -7

concat_string_date

Hallo am 2023-12-01

<NULL>

<NULL>

concat_with_null_handling

Hallo mit der Nummer 42

Unbekannt mit Nummer 0

Redshift mit Nummer -7

Ausgabecode:

 CREATE TABLE concatenation_demo (
    col1 VARCHAR(20),
    col2 INTEGER,
    col3 DATE
)
COMMENT = '{ "origin": "sf_sc", "name": "snowconvert", "version": {  "major": 0,  "minor": 0,  "patch": "0" }, "attributes": {  "component": "redshift",  "convertedOn": "12/16/2024",  "domain": "test" }}';

INSERT INTO concatenation_demo (col1, col2, col3) VALUES
('Hello', 42, '2023-12-01'),
(NULL, 0, '2024-01-01'),
('Redshift', -7, NULL);

SELECT
    col1 || ' has number ' || col2 AS concat_string_number
FROM
    concatenation_demo;

SELECT
    col1 || ' on ' || col3 AS concat_string_date
FROM
    concatenation_demo;

SELECT
    COALESCE(col1, 'Unknown') || ' with number ' || COALESCE(CAST(col2 AS VARCHAR), 'N/A') AS concat_with_null_handling
FROM
    concatenation_demo;
Copy

concat_string_number

Hallo hat die Nummer 42

<NULL>

Redshift hat die Nummer -7

concat_string_date

Hallo am 2023-12-01

<NULL>

<NULL>

concat_with_null_handling

Hallo mit der Nummer 42

Unbekannt mit Nummer 0

Redshift mit Nummer -7

Bekannte Probleme

Es wurden keine Probleme gefunden.

Zugehörige EWIs

Es gibt keine bekannten Probleme.

Arithmetische Operatoren

Übersetzung für arithmetische Operatoren

Umrechnungstabelle

RedshiftSnowflakeComments
+/- (positive and negative sign/operator)+/- Fully supported by Snowflake
^ (exponentiation)POWERFully supported by Snowflake
* (multiplication)*Fully supported by Snowflake
/ (division)/Redshift division between integers always returns integer value, FLOOR function is added to emulate this behavior.
% (modulo)%Fully supported by Snowflake
+ (addition)+ and ||Fully supported by Snowflake. When string are added, it is transformed to a concat.
- (subtraction)-Fully supported by Snowflake
@ (absolute value)ABSFully supported by Snowflake
|/ (square root)SQRTFully supported by Snowflake
||/ (cube root)CBRTFully supported by Snowflake

Beispielhafte Quellcode-Muster

Addition, Subtraktion, Positiv & Negativ

Eingabecode:

 CREATE TABLE test_math_operations (
    base_value DECIMAL(10, 2),
    multiplier INT,
    divisor INT,
    description VARCHAR(100),
    created_at TIMESTAMP,
    category VARCHAR(50)
);


INSERT INTO test_math_operations (base_value, multiplier, divisor, description, created_at, category)
VALUES
(100.50, 2, 5, 'Basic test', '2024-12-01 10:30:00', 'Type A'),
(250.75, 3, 10, 'Complex operations', '2024-12-02 15:45:00', 'Type B'),
(-50.25, 5, 8, 'Negative base value', '2024-12-03 20:00:00', 'Type C'),
(0, 10, 2, 'Zero base value', '2024-12-04 09:15:00', 'Type D');


SELECT +base_value AS positive_value,
       -base_value AS negative_value,
       (base_value + multiplier - divisor) AS add_sub_result,
       created_at + INTERVAL '1 day' AS next_day,
       created_at - INTERVAL '1 hour' AS one_hour_before,
       description + category as string_sum,
       base_value + '5' as int_string_sum,
       '5' + base_value as string_int_sum
FROM test_math_operations;
Copy
positive_valuenegative_valueadd_sub_resultnext_dayone_hour_beforestring_sumint_string_sumstring_int_sum
100.50-100.5097.502024-12-02 10:30:00.0000002024-12-01 09:30:00.000000Basic testType A105.5105.5
250.75-250.75243.752024-12-03 15:45:00.0000002024-12-02 14:45:00.000000Complex operationsType B255.75255.75
-50.2550.25-53.252024-12-04 20:00:00.0000002024-12-03 19:00:00.000000Negative base valueType C-45.25-45.25
0.000.008.002024-12-05 09:15:00.0000002024-12-04 08:15:00.000000Zero base valueType D55

Ausgabecode:

 CREATE TABLE test_math_operations (
    base_value DECIMAL(10, 2),
    multiplier INT,
    divisor INT,
    description VARCHAR(100),
    created_at TIMESTAMP,
    category VARCHAR(50)
)
COMMENT = '{ "origin": "sf_sc", "name": "snowconvert", "version": {  "major": 0,  "minor": 0,  "patch": "0" }, "attributes": {  "component": "redshift",  "convertedOn": "12/16/2024",  "domain": "test" }}';


INSERT INTO test_math_operations (base_value, multiplier, divisor, description, created_at, category)
VALUES
(100.50, 2, 5, 'Basic test', '2024-12-01 10:30:00', 'Type A'),
(250.75, 3, 10, 'Complex operations', '2024-12-02 15:45:00', 'Type B'),
(-50.25, 5, 8, 'Negative base value', '2024-12-03 20:00:00', 'Type C'),
(0, 10, 2, 'Zero base value', '2024-12-04 09:15:00', 'Type D');


SELECT +base_value AS positive_value,
       -base_value AS negative_value,
       (base_value + multiplier - divisor) AS add_sub_result,
       created_at + INTERVAL '1 day' AS next_day,
       created_at - INTERVAL '1 hour' AS one_hour_before,
       description || category as string_sum,
       base_value + '5' as int_string_sum,
       '5' + base_value as string_int_sum
FROM
       test_math_operations;
Copy
positive_valuenegative_valueadd_sub_resultnext_dayone_hour_beforestring_sumint_string_sumstring_int_sum
100.5-100.597.52024-12-02 10:30:002024-12-01 09:30:00Basic testType A105.5105.5
250.75-250.75243.752024-12-03 15:45:002024-12-02 14:45:00Complex operationsType B255.75255.75
-50.2550.25-53.252024-12-04 20:00:002024-12-03 19:00:00Negative base valueType C-45.25-45.25
0082024-12-05 09:15:002024-12-04 08:15:00Zero base valueType D55
Potenzierung, Multiplikation, Division & Modulo

Eingabecode:

 CREATE TABLE test_math_operations (
    base_value DECIMAL(10, 2),
    multiplier INT,
    divisor INT,
    mod_value INT,
    exponent INT
);

INSERT INTO test_math_operations (base_value, multiplier, divisor, mod_value, exponent)
VALUES
(100.50, 2, 5, 3, 2),
(250.75, 3, 10, 7, 3),
(-50.25, 5, 8, 4, 4),
(0, 10, 2, 1, 5);

SELECT
    base_value ^ exponent AS raised_to_exponent,
    (base_value * multiplier) AS multiplied_value,
    (base_value / divisor) AS divided_value,
    base_value::int / divisor as int_division,
    (mod_value % 2) AS modulo_result,
    (base_value + multiplier - divisor) AS add_sub_result,
    (base_value + (multiplier * (divisor - mod_value))) AS controlled_eval
FROM
    test_math_operations;
Copy
raised_to_exponentmultiplied_valuedivided_valueint_divisionmodulo_resultadd_sub_resultcontrolled_eval
10100.2520120.120197.5104.5
15766047.296875752.2525.075251243.75259.75
6375940.62890625-251.25-6.28125-60-53.25-30.25
00001810

Ausgabecode:

 CREATE TABLE test_math_operations (
    base_value DECIMAL(10, 2),
    multiplier INT,
    divisor INT,
    mod_value INT,
    exponent INT
)
COMMENT = '{ "origin": "sf_sc", "name": "snowconvert", "version": {  "major": 0,  "minor": 0,  "patch": "0" }, "attributes": {  "component": "redshift",  "convertedOn": "12/10/2024",  "domain": "test" }}';

INSERT INTO test_math_operations (base_value, multiplier, divisor, mod_value, exponent)
VALUES
(100.50, 2, 5, 3, 2),
(250.75, 3, 10, 7, 3),
(-50.25, 5, 8, 4, 4),
(0, 10, 2, 1, 5);

SELECT
    POWER(
    base_value, exponent) AS raised_to_exponent,
    (base_value * multiplier) AS multiplied_value,
    (base_value / divisor) AS divided_value,
    FLOOR(
    base_value::int / divisor) as int_division,
    (mod_value % 2) AS modulo_result,
    (base_value + multiplier - divisor) AS add_sub_result,
    (base_value + (multiplier * (divisor - mod_value))) AS controlled_eval
FROM
    test_math_operations;
Copy
raised_to_exponentmultiplied_valuedivided_valueint_divisionmodulo_resultadd_sub_resultcontrolled_eval
10100.2520120.120197.5104.5
15766047.2969752.2525.075251243.75259.75
6375940.6289-251.25-6.2812-70-53.25-30.25
00001810
Absoluter Wert, Quadratwurzel und Kubikwurzel

Eingabecode:

 CREATE TABLE unary_operators
(
    col1 INTEGER,
    col2 INTEGER
);

INSERT INTO unary_operators VALUES
(14, 10),
(-8, 8),
(975, 173),
(-1273, 187);

SELECT
|/ col2 AS square_root,
||/ col1 AS cube_root,
@ col1 AS absolute_value
FROM unary_operators;
Copy
+-------------------+--------------------+--------------+
|square_root        |cube_root           |absolute_value|
+-------------------+--------------------+--------------+
|3.1622776601683795 |2.4101422641752306  |14            |
|2.8284271247461903 |-2                  |8             |
|13.152946437965905 |9.915962413403873   |975           |
|13.674794331177344 |-10.837841647592736 |1273          |
+-------------------+--------------------+--------------+

Copy

Ausgabecode:

 CREATE TABLE unary_operators
(
    col1 INTEGER,
    col2 INTEGER
)
COMMENT = '{ "origin": "sf_sc", "name": "snowconvert", "version": {  "major": 0,  "minor": 0,  "patch": "0" }, "attributes": {  "component": "redshift",  "convertedOn": "12/17/2024",  "domain": "test" }}';

INSERT INTO unary_operators
VALUES
(14, 10),
(-8, 8),
(975, 173),
(-1273, 187);

SELECT
    SQRT(col2) AS square_root,
    CBRT(col1) AS cube_root,
    ABS(col1) AS absolute_value
FROM
    unary_operators;
Copy
+-------------+--------------+--------------+
|square_root  |cube_root     |absolute_value|
+-------------+--------------+--------------+
|3.16227766   |2.410142264   |14            |
|2.828427125  |-2            |8             |
|13.152946438 |9.915962413   |975           |
|13.674794331 |-10.837841648 |1273          |
+-------------+--------------+--------------+

Copy

Bekannte Probleme

  1. In Snowflake ist es möglich, die unären Operatoren +und - mit Zeichenfolgenwerten zu verwenden, in Redshift ist dies jedoch nicht zulässig.

Zugehörige EWIs

Keine zugehörigen EWIs.

Bitweise Operatoren

Übersetzung für bitweise Operatoren

Umrechnungstabelle

RedshiftSnowflakeComments
& (AND)BITANDFully supported by Snowflake
| (OR)BITORFully supported by Snowflake
<< (Shift Left)BITSHIFTLEFT
>> (Shift Right)BITSHIFTRIGHT
# (XOR)BITXORFully supported by Snowflake
~ (NOT)BITNOTFully supported by Snowflake

Beispielhafte Quellcode-Muster

Datenkonfiguration

Redshift

 CREATE TABLE bitwise_demo (
    col1 INTEGER,
    col2 INTEGER,
    col3 INTEGER,
    col4 VARBYTE(5),
    col5 VARBYTE(7)
);

INSERT INTO bitwise_demo (col1, col2, col3, col4, col5) VALUES
-- Binary: 110, 011, 1111, 0100100001100101011011000110110001101111, 0100100001101001
(6, 3, 15, 'Hello'::VARBYTE, 'Hi'::VARBYTE),
-- Binary: 1010, 0101, 0111, 0100000101000010, 01000011
(10, 5, 7, 'AB'::VARBYTE, 'C'::VARBYTE),   
-- Binary: 11111111, 10000000, 01000000, 010000100111100101100101, 01000111011011110110111101100100010000100111100101100101
(255, 128, 64, 'Bye'::VARBYTE, 'GoodBye'::VARBYTE),
-- Edge case with small numbers and a negative number
(1, 0, -1, 'Hey'::VARBYTE, 'Ya'::VARBYTE);
Copy

Snowflake

 CREATE TABLE bitwise_demo (
    col1 INTEGER,
    col2 INTEGER,
    col3 INTEGER,
    col4 BINARY(5),
    col5 BINARY(7)
);

-- Binary: 110, 011, 1111, 0100100001100101011011000110110001101111, 0100100001101001
INSERT INTO bitwise_demo (col1, col2, col3, col4, col5) SELECT 6, 3, 15, TO_BINARY(HEX_ENCODE('Hello')), TO_BINARY(HEX_ENCODE('Hi'));  
-- Binary: 1010, 0101, 0111, 0100000101000010, 01000011 
INSERT INTO bitwise_demo (col1, col2, col3, col4, col5) SELECT 10, 5, 7, TO_BINARY(HEX_ENCODE('AB')), TO_BINARY(HEX_ENCODE('C'));   
-- Binary: 11111111, 10000000, 01000000, 010000100111100101100101, 01000111011011110110111101100100010000100111100101100101
INSERT INTO bitwise_demo (col1, col2, col3, col4, col5) SELECT 255, 128, 64, TO_BINARY(HEX_ENCODE('Bye')), TO_BINARY(HEX_ENCODE('GoodBye')); 
-- Edge case with small numbers and a negative number
INSERT INTO bitwise_demo (col1, col2, col3, col4, col5) SELECT 1, 0, -1, TO_BINARY(HEX_ENCODE('Hey')), TO_BINARY(HEX_ENCODE('Ya'));
Copy
Bitweise Operatoren auf Ganzzahlwerte

Eingabecode:

 SELECT
    -- Bitwise AND
    col1 & col2 AS bitwise_and,  -- col1 AND col2

    -- Bitwise OR
    col1 | col2 AS bitwise_or,   -- col1 OR col2

    -- Left Shift
    col3 << 1 AS left_shift_col3, -- col3 shifted left by 1

    -- Right Shift
    col3 >> 1 AS right_shift_col3, -- col3 shifted right by 1

    -- XOR
    col1 # col2 AS bitwise_xor, -- col1 XOR col2

    -- NOT
    ~ col3 AS bitwise_not -- NOT col3

FROM bitwise_demo;
Copy
+-------------+------------+-----------------+------------------+-------------+-------------+
| bitwise_and | bitwise_or | left_shift_col3 | right_shift_col3 | bitwise_xor | bitwise_not |
+-------------+------------+-----------------+------------------+-------------+-------------+
|2            |7           |30               |7                 |5            |-16          |
|0            |15          |14               |3                 |15           |-8           |
|128          |255         |128              |32                |127          |-65          |
|0            |1           |-2               |-1                |1            |0            |
+-------------+------------+-----------------+------------------+-------------+-------------+

Copy

Ausgabecode:

 SELECT
        BITAND(
        -- Bitwise AND
        col1, col2) AS bitwise_and,  -- col1 AND col2
        BITOR(

        -- Bitwise OR
        col1, col2) AS bitwise_or,   -- col1 OR col2
        -- Left Shift
        --** SSC-FDM-PG0010 - RESULTS MAY VARY DUE TO THE BEHAVIOR OF SNOWFLAKE'S BITSHIFTLEFT BITWISE FUNCTION **
        BITSHIFTLEFT(
        col3, 1) AS left_shift_col3, -- col3 shifted left by 1
        -- Right Shift
        --** SSC-FDM-PG0010 - RESULTS MAY VARY DUE TO THE BEHAVIOR OF SNOWFLAKE'S BITSHIFTRIGHT BITWISE FUNCTION **
        BITSHIFTRIGHT(
        col3, 1) AS right_shift_col3, -- col3 shifted right by 1
        BITXOR(

        -- XOR
        col1, col2) AS bitwise_xor, -- col1 XOR col2
        -- NOT
        BITNOT(col3) AS bitwise_not -- NOT col3
FROM
        bitwise_demo;
Copy
+-------------+------------+-----------------+------------------+-------------+-------------+
| bitwise_and | bitwise_or | left_shift_col3 | right_shift_col3 | bitwise_xor | bitwise_not |
+-------------+------------+-----------------+------------------+-------------+-------------+
|2            |7           |30               |7                 |5            |-16          |
|0            |15          |14               |3                 |15           |-8           |
|128          |255         |128              |32                |127          |-65          |
|0            |1           |-2               |-1                |1            |0            |
+-------------+------------+-----------------+------------------+-------------+-------------+

Copy
Bitweise Operatoren auf binären Daten

Bei den Funktionen BITAND, BITOR und BITXOR wird der Parameter'LEFT' hinzugefügt, um eine Auffüllung einzufügen, falls die beiden Binärwerte unterschiedlich lang sind. Dies geschieht, um Fehler beim Vergleich der Werte in Snowflake zu vermeiden.

Redshift

 SELECT
    -- Bitwise AND
    col4 & col5 AS bitwise_and,  -- col4 AND col5

    -- Bitwise OR
    col4 | col5 AS bitwise_or,   -- col4 OR col5

    -- XOR
    col4 # col5 AS bitwise_xor, -- col4 XOR col5

    -- NOT
    ~ col4 AS bitwise_not -- NOT col4

FROM bitwise_demo;
Copy
+-----------------+-----------------+-----------------+-------------+
| bitwise_and     | bitwise_or      | bitwise_xor     | bitwise_not |
+-----------------+-----------------+-----------------+-------------+
|0x0000004869     |0x48656C6C6F     |0x48656C2406     |0xB79A939390 |
|0x0042           |0x4143           |0x4101           |0xBEBD       |
|0x00000000427965 |0x476F6F64427965 |0x476F6F64000000 |0xBD869A     |
|0x004161         |0x487D79         |0x483C18         |0xB79A86     |
+-----------------+-----------------+-----------------+-------------+

Copy

Snowflake

 SELECT
    BITAND(
    -- Bitwise AND
    col4, col5, 'LEFT') AS bitwise_and,  -- col4 AND col5
    BITOR(

    -- Bitwise OR
    col4, col5, 'LEFT') AS bitwise_or,   -- col4 OR col5

    -- XOR
    BITXOR(col4, col5, 'LEFT') AS bitwise_xor, -- col4 XOR col5

    -- NOT
    BITNOT(col4) AS bitwise_not -- NOT col4
    
    FROM bitwise_demo;
Copy
+---------------+---------------+---------------+-------------+
| bitwise_and   | bitwise_or    | bitwise_xor   | bitwise_not |
+---------------+---------------+---------------+-------------+
|0000004869     |48656C6C6F     |48656C2406     |B79A939390   |
|0042           |4143           |4101           |BEBD         |
|00000000427965 |476F6F64427965 |476F6F64000000 |BD869A       |
|004161         |487D79         |483C18         |B79A86       |
+---------------+---------------+---------------+-------------+

Copy

Bekannte Probleme

Es wurden keine Probleme gefunden.

Zugehörige EWIs

  • [SSC-FDM-PG0010](../../general/technical-documentation/issues-and-troubleshooting/functional-difference/postgresqlFDM. md#ssc-fdm-pg0010): Die Ergebnisse können aufgrund des Verhaltens der bitweisen Funktion von Snowflake variieren.