Snowflake Commands Reference¶
Overview¶
This page provides comprehensive reference documentation for Snowflake-to-Snowflake validation commands in the Snowflake Data Validation CLI. This feature enables validation between different Snowflake accounts, regions, or databases—useful for cross-account migrations, region migrations, or verifying data replication.
For other source platforms, see SQL Server Commands Reference, Teradata Commands Reference, or Redshift Commands Reference.
Command Structure¶
All Snowflake commands follow this consistent structure:
snowflake-data-validation snowflake <command> [options]
# Or use the shorter alias
sdv snowflake <command> [options]
Where <command> is one of:
run-validation- Run synchronous validationrun-async-validation- Run asynchronous validationgenerate-validation-scripts- Generate validation scriptsget-configuration-files- Get configuration templatesauto-generated-configuration-file- Interactive config generationrow-partitioning-helper- Interactive row partitioning configurationcolumn-partitioning-helper- Interactive column partitioning configurationsource-validate- Execute validation on source only and save results as Parquet files
Run Synchronous Validation¶
Validates data between source and target Snowflake databases in real-time.
Syntax¶
snowflake-data-validation snowflake run-validation \
--data-validation-config-file /path/to/config.yaml \
--log-level INFO
Options¶
--data-validation-config-file, -dvf (required)
Type: String (path)
Description: Path to YAML configuration file containing validation settings
Example:
--data-validation-config-file ./configs/snowflake_validation.yaml
--log-level, -ll (optional)
Type: String
Valid Values: DEBUG, INFO, WARNING, ERROR, CRITICAL
Default: INFO
Description: Logging level for validation execution
Example:
--log-level DEBUG
Example Usage¶
# Basic validation
sdv snowflake run-validation \
--data-validation-config-file ./configs/snowflake_validation.yaml
# Validation with debug logging
sdv snowflake run-validation \
--data-validation-config-file ./configs/snowflake_validation.yaml \
--log-level DEBUG
# Using full command name
snowflake-data-validation snowflake run-validation \
-dvf /opt/validations/prod_config.yaml \
-ll INFO
Use Cases¶
Cross-account Snowflake migration validation
Cross-region data replication verification
Database copy validation within the same account
Pre-cutover validation checks
Post-migration verification
Continuous validation in CI/CD pipelines
Run Asynchronous Validation¶
Performs validation using pre-generated metadata files without connecting to databases.
Syntax¶
snowflake-data-validation snowflake run-async-validation \
--data-validation-config-file /path/to/config.yaml
Options¶
--data-validation-config-file, -dvf (required)
Type: String (path)
Description: Path to YAML configuration file
Note: Configuration must specify paths to pre-generated metadata files
Example Usage¶
# Run async validation
sdv snowflake run-async-validation \
--data-validation-config-file ./configs/async_validation.yaml
# Using full command name
snowflake-data-validation snowflake run-async-validation \
-dvf /data/validations/async_config.yaml
Prerequisites¶
Before running async validation:
Generate validation scripts using
generate-validation-scriptsExecute the generated scripts on source and target Snowflake databases
Save results to metadata files
Ensure metadata files are available in the configured paths
Use Cases¶
Validating in environments with restricted database access
Separating metadata extraction from validation
Batch validation workflows
Scheduled validation jobs
When database connections are intermittent
Source Validate¶
Executes validation queries on the source Snowflake database only and saves results as Parquet files for later comparison without needing source database access.
Syntax¶
snowflake-data-validation snowflake source-validate \
--data-validation-config-file /path/to/config.yaml \
--log-level INFO
Options¶
--data-validation-config-file, -dvf (required)
Type: String (path)
Description: Path to YAML configuration file
--log-level, -ll (optional)
Type: String
Valid Values: DEBUG, INFO, WARNING, ERROR, CRITICAL
Default: INFO
Description: Logging level for validation execution
Example:
--log-level DEBUG
Example Usage¶
# Run source validation
sdv snowflake source-validate \
--data-validation-config-file ./configs/snowflake_validation.yaml
# Source validation with debug logging
sdv snowflake source-validate \
--data-validation-config-file ./configs/snowflake_validation.yaml \
--log-level DEBUG
# Using full command name
snowflake-data-validation snowflake source-validate \
-dvf /opt/configs/validation.yaml \
-ll INFO
Output¶
The command generates Parquet files in the configured output directory containing:
Schema metadata from source tables
Metrics data (row counts, statistics)
Row-level data for comparison (if row validation is enabled)
Use Cases¶
Offline validation: Extract source data once, validate multiple times
Network-restricted environments: Export data when source is accessible, validate later
Performance optimization: Separate data extraction from comparison
Archival purposes: Keep point-in-time snapshots of source metadata
Cross-environment validation: Extract from production, validate in development
Generate Validation Scripts¶
Generates SQL scripts for Snowflake metadata extraction that can be executed separately.
Syntax¶
snowflake-data-validation snowflake generate-validation-scripts \
--data-validation-config-file /path/to/config.yaml
Options¶
--data-validation-config-file, -dvf (required)
Type: String (path)
Description: Path to YAML configuration file
Example Usage¶
# Generate scripts
sdv snowflake generate-validation-scripts \
--data-validation-config-file ./configs/validation.yaml
# Using full command name
snowflake-data-validation snowflake generate-validation-scripts \
-dvf /opt/configs/script_generation.yaml
Output¶
The command generates SQL scripts in the output directory configured in your YAML file:
<output_directory>/
├── source_schema_queries.sql
├── source_metrics_queries.sql
├── source_row_queries.sql
├── target_schema_queries.sql
├── target_metrics_queries.sql
└── target_row_queries.sql
Use Cases¶
Generating scripts for execution by DBAs
Compliance requirements for query review
Environments where direct CLI database access is restricted
Manual execution and validation workflows
Separating metadata extraction from validation
Get Configuration Templates¶
Retrieves Snowflake configuration templates for validation setup.
Syntax¶
snowflake-data-validation snowflake get-configuration-files \
--templates-directory ./snowflake-templates \
--query-templates
Options¶
--templates-directory, -td (optional)
Type: String (path)
Default: Current directory
Description: Directory to save template files
Example:
--templates-directory ./templates
--query-templates (optional)
Type: Flag (no value required)
Description: Include J2 (Jinja2) query template files for advanced customization
Example:
--query-templates
Example Usage¶
# Get basic templates in current directory
sdv snowflake get-configuration-files
# Save templates to specific directory
sdv snowflake get-configuration-files \
--templates-directory ./my-project/snowflake-templates
# Include query templates for customization
sdv snowflake get-configuration-files \
--templates-directory ./templates \
--query-templates
# Using short flags
sdv snowflake get-configuration-files -td ./templates --query-templates
Output Files¶
Without --query-templates flag:
<templates_directory>/
└── snowflake_validation_template.yaml
With --query-templates flag:
<templates_directory>/
├── snowflake_validation_template.yaml
└── query_templates/
├── snowflake_columns_metrics_query.sql.j2
├── snowflake_row_count_query.sql.j2
└── snowflake_compute_md5_sql.j2
Use Cases¶
Starting a new Snowflake-to-Snowflake validation project
Learning Snowflake-specific configuration options
Customizing validation queries
Creating organization-specific templates
Auto-Generate Configuration File¶
Interactive command to generate a configuration file by prompting for Snowflake connection parameters.
Syntax¶
snowflake-data-validation snowflake auto-generated-configuration-file
Options¶
This command has no command-line options. All input is provided through interactive prompts.
Interactive Prompts¶
The command will prompt for the following information:
Snowflake Named Connection name
Name of pre-configured Snowflake connection
Default:
defaultExample:
my_snowflake_connection
Snowflake database
Name of the database to validate
Example:
PRODUCTION_DB
Snowflake schema
Schema name within the database
Example:
PUBLIC
Output path for configuration file
Where to save the generated YAML file
Example:
./configs/snowflake_config.yaml
Example Session¶
$ sdv snowflake auto-generated-configuration-file
Generating basic configuration file for Snowflake validation...
Please provide the following connection information:
Snowflake Named Connection name [default]: prod_connection
Snowflake database: PRODUCTION_DB
Snowflake schema: PUBLIC
Output path for the configuration file: ./configs/snowflake_validation.yaml
Configuration file generated successfully!
Generated Configuration¶
The command generates a basic YAML configuration file:
source_platform: Snowflake
target_platform: Snowflake
output_directory_path: ./validation_results
source_connection:
mode: name
name: prod_connection
target_connection:
mode: default
validation_configuration:
schema_validation: true
metrics_validation: true
row_validation: false
tables: []
Next Steps After Generation¶
Edit the configuration file to add:
Target connection details (if not using default)
Tables to validate
Validation options
Column selections and mappings
Review connection settings:
Verify source and target connection names
Consider using environment variables for sensitive data
Add table configurations:
Specify fully qualified table names
Configure column selections
Set up filtering where clauses
Test the configuration:
sdv snowflake run-validation \ --data-validation-config-file ./configs/snowflake_validation.yaml
Use Cases¶
Quick setup for new Snowflake-to-Snowflake users
Generating baseline configurations
Testing connectivity during setup
Creating template configurations for teams
Row Partitioning Helper¶
Interactive command to generate partitioned table configurations for large tables. This helper divides tables into smaller row partitions based on a specified column, enabling more efficient validation of large datasets.
Syntax¶
snowflake-data-validation snowflake row-partitioning-helper
Options¶
This command has no command-line options. All input is provided through interactive prompts.
How It Works¶
The row partitioning helper:
Reads an existing configuration file with table definitions
For each table, prompts whether to apply partitioning
If partitioning is enabled, collects partition parameters
Queries the source Snowflake database to determine partition boundaries
Generates new table configurations with
WHEREclauses for each partitionSaves the partitioned configuration to a new file
Interactive Prompts¶
The command will prompt for the following information:
Configuration file path
Path to existing YAML configuration file
Example:
./configs/snowflake_validation.yaml
For each table in the configuration:
a. Apply partitioning? (yes/no)
Whether to partition this specific table
Default: yes
b. Partition column (if partitioning)
Column name used to divide the table
Should be indexed or clustered for performance
Example:
transaction_id,created_date
c. Is partition column a string type? (yes/no)
Determines quoting in generated WHERE clauses
Default: no (numeric)
d. Number of partitions
How many partitions to create
Example:
10,50,100
Example Session¶
$ sdv snowflake row-partitioning-helper
Generate a configuration file for Snowflake table partitioning. This interactive
helper function processes each table in the configuration file, allowing users to
either skip partitioning or specify partitioning parameters for each table.
Configuration file path: ./configs/snowflake_validation.yaml
Apply partitioning for PROD_DB.PUBLIC.FACT_SALES? [Y/n]: y
Write the partition column for PROD_DB.PUBLIC.FACT_SALES: SALE_ID
Is 'SALE_ID' column a string type? [y/N]: n
Write the number of partitions for PROD_DB.PUBLIC.FACT_SALES: 10
Apply partitioning for PROD_DB.PUBLIC.DIM_CUSTOMER? [Y/n]: n
Apply partitioning for PROD_DB.PUBLIC.TRANSACTIONS? [Y/n]: y
Write the partition column for PROD_DB.PUBLIC.TRANSACTIONS: TRANSACTION_DATE
Is 'TRANSACTION_DATE' column a string type? [y/N]: n
Write the number of partitions for PROD_DB.PUBLIC.TRANSACTIONS: 5
Table partitioning configuration file generated successfully!
Generated Output¶
The command generates partitioned table configurations with WHERE clauses:
tables:
# Original table partitioned into 10 segments
- fully_qualified_name: PROD_DB.PUBLIC.FACT_SALES
where_clause: "SALE_ID >= 1 AND SALE_ID < 100000"
target_where_clause: "SALE_ID >= 1 AND SALE_ID < 100000"
# ... other table settings preserved
- fully_qualified_name: PROD_DB.PUBLIC.FACT_SALES
where_clause: "SALE_ID >= 100000 AND SALE_ID < 200000"
target_where_clause: "SALE_ID >= 100000 AND SALE_ID < 200000"
# ... continues for each partition
# Non-partitioned table preserved as-is
- fully_qualified_name: PROD_DB.PUBLIC.DIM_CUSTOMER
# ... original configuration
Use Cases¶
Large table validation: Break multi-billion row tables into manageable chunks
Parallel processing: Enable concurrent validation of different partitions
Memory optimization: Reduce memory footprint by processing smaller data segments
Incremental validation: Validate specific data ranges independently
Performance tuning: Optimize validation for tables with uneven data distribution
Best Practices¶
Choose appropriate partition columns:
Use clustered columns for better query performance
Prefer columns with sequential values (IDs, timestamps)
Avoid columns with highly skewed distributions
Determine optimal partition count:
Consider table size and available resources
Start with 10-20 partitions for tables with 10M+ rows
Increase partitions for very large tables (100M+ rows)
String vs numeric columns:
Numeric columns are generally more efficient
String columns work but may have uneven distribution
After partitioning:
Review generated WHERE clauses
Adjust partition boundaries if needed
Test with a subset before full validation
Column Partitioning Helper¶
Interactive command to generate partitioned table configurations for wide tables with many columns. This helper divides tables into smaller column partitions, enabling more efficient validation of tables with a large number of columns.
Syntax¶
snowflake-data-validation snowflake column-partitioning-helper
Options¶
This command has no command-line options. All input is provided through interactive prompts.
How It Works¶
The column partitioning helper:
Reads an existing configuration file with table definitions
For each table, prompts whether to apply column partitioning
If partitioning is enabled, collects the number of partitions
Queries the source Snowflake database to retrieve all column names for the table
Divides the columns into the specified number of partitions
Generates new table configurations where each partition validates only a subset of columns
Saves the partitioned configuration to a new file
Interactive Prompts¶
The command will prompt for the following information:
Configuration file path
Path to existing YAML configuration file
Example:
./configs/snowflake_validation.yaml
For each table in the configuration:
a. Apply column partitioning? (yes/no)
Whether to partition this specific table by columns
Default: yes
b. Number of partitions (if partitioning)
How many column partitions to create
Example:
3,5,10
Example Session¶
$ sdv snowflake column-partitioning-helper
Generate a configuration file for Snowflake column partitioning. This interactive
helper function processes each table in the configuration file, allowing users to
either skip column partitioning or specify column partitioning parameters for each table.
Configuration file path: ./configs/snowflake_validation.yaml
Apply column partitioning for PROD_DB.PUBLIC.WIDE_TABLE? [Y/n]: y
Write the number of partitions for PROD_DB.PUBLIC.WIDE_TABLE: 5
Apply column partitioning for PROD_DB.PUBLIC.SMALL_TABLE? [Y/n]: n
Apply column partitioning for PROD_DB.PUBLIC.REPORT_TABLE? [Y/n]: y
Write the number of partitions for PROD_DB.PUBLIC.REPORT_TABLE: 3
Column partitioning configuration file generated successfully!
Generated Output¶
The command generates partitioned table configurations with column subsets:
tables:
# Original table with 100 columns partitioned into 5 segments (20 columns each)
- fully_qualified_name: PROD_DB.PUBLIC.WIDE_TABLE
use_column_selection_as_exclude_list: false
column_selection_list:
- COLUMN_A
- COLUMN_B
- COLUMN_C
# ... first 20 columns alphabetically
- fully_qualified_name: PROD_DB.PUBLIC.WIDE_TABLE
use_column_selection_as_exclude_list: false
column_selection_list:
- COLUMN_D
- COLUMN_E
- COLUMN_F
# ... next 20 columns alphabetically
# ... continues for each partition
# Non-partitioned table preserved as-is
- fully_qualified_name: PROD_DB.PUBLIC.SMALL_TABLE
# ... original configuration
Use Cases¶
Wide table validation: Break tables with hundreds of columns into manageable chunks
Memory optimization: Reduce memory footprint by validating fewer columns at a time
Parallel processing: Enable concurrent validation of different column groups
Targeted validation: Validate specific column groups independently
Performance tuning: Optimize validation for tables with many VARIANT or complex columns
Best Practices¶
Determine optimal partition count:
Consider the total number of columns in the table
For tables with 50+ columns, start with 3-5 partitions
For tables with 100+ columns, consider 5-10 partitions
Column ordering:
Columns are divided alphabetically
Related columns may end up in different partitions
After partitioning:
Review generated column lists
Verify all required columns are included
Test with a subset before full validation
Combine with row partitioning:
For very large, wide tables, consider using both row and column partitioning
First partition by columns, then apply row partitioning to each column partition if needed
Snowflake Connection Configuration¶
Snowflake connections support multiple modes for both source and target databases.
Connection Modes¶
Option 1: Named Connection¶
Use a pre-configured Snowflake connection saved in your Snowflake connections file.
source_connection:
mode: name
name: "my_source_connection"
target_connection:
mode: name
name: "my_target_connection"
Fields:
mode(required): Must be"name"name(required): Name of the saved Snowflake connection
Option 2: Default Connection¶
Use the default Snowflake connection from your environment.
source_connection:
mode: default
target_connection:
mode: default
Fields:
mode(required): Must be"default"
Option 3: Credentials Mode (IPC Only)¶
Note: The
credentialsmode is only available when using IPC (Inter-Process Communication) commands directly via CLI parameters, not in YAML configuration files. This mode is exclusive to the SnowConvert UI.
Connection Examples¶
Same Account, Different Databases:
source_connection:
mode: name
name: prod_connection
target_connection:
mode: name
name: prod_connection # Same connection, different database specified in tables
Cross-Account Validation:
source_connection:
mode: name
name: source_account_connection
target_connection:
mode: name
name: target_account_connection
Cross-Region Migration:
source_connection:
mode: name
name: us_east_connection
target_connection:
mode: name
name: eu_west_connection
Development to Production Comparison:
source_connection:
mode: name
name: dev_connection
target_connection:
mode: name
name: prod_connection
Setting Up Named Connections¶
Snowflake connections are typically configured using the Snowflake CLI or SnowSQL configuration files.
SnowSQL Configuration Example (~/.snowsql/config):
[connections.prod_connection]
accountname = myaccount.us-east-1
username = my_user
password = my_password
dbname = PRODUCTION_DB
schemaname = PUBLIC
warehousename = COMPUTE_WH
[connections.dev_connection]
accountname = myaccount.us-east-1
username = my_user
password = my_password
dbname = DEVELOPMENT_DB
schemaname = PUBLIC
warehousename = DEV_WH
Snowflake CLI Configuration Example (~/.snowflake/connections.toml):
[prod_connection]
account = "myaccount.us-east-1"
user = "my_user"
password = "my_password"
database = "PRODUCTION_DB"
schema = "PUBLIC"
warehouse = "COMPUTE_WH"
[dev_connection]
account = "myaccount.us-east-1"
user = "my_user"
password = "my_password"
database = "DEVELOPMENT_DB"
schema = "PUBLIC"
warehouse = "DEV_WH"
Complete Snowflake Examples¶
Example 1: Basic Snowflake-to-Snowflake Configuration¶
# Global configuration
source_platform: Snowflake
target_platform: Snowflake
output_directory_path: ./validation_results
max_threads: auto
# Source connection (development)
source_connection:
mode: name
name: dev_connection
# Target connection (production)
target_connection:
mode: name
name: prod_connection
# Validation configuration
validation_configuration:
schema_validation: true
metrics_validation: true
row_validation: false
# Tables to validate
tables:
- fully_qualified_name: DEV_DB.PUBLIC.CUSTOMERS
target_database: PROD_DB
target_schema: PUBLIC
target_name: CUSTOMERS
use_column_selection_as_exclude_list: false
column_selection_list: []
index_column_list:
- CUSTOMER_ID
- fully_qualified_name: DEV_DB.PUBLIC.ORDERS
target_database: PROD_DB
target_schema: PUBLIC
target_name: ORDERS
use_column_selection_as_exclude_list: true
column_selection_list:
- INTERNAL_NOTES
- AUDIT_LOG
Example 2: Cross-Account Migration Validation¶
# Global configuration
source_platform: Snowflake
target_platform: Snowflake
output_directory_path: /opt/validation/cross_account
max_threads: 16
# Source connection (Account A)
source_connection:
mode: name
name: account_a_connection
# Target connection (Account B)
target_connection:
mode: name
name: account_b_connection
# Validation configuration
validation_configuration:
schema_validation: true
metrics_validation: true
row_validation: true
max_failed_rows_number: 200
# Comparison configuration
comparison_configuration:
tolerance: 0.01
# Logging configuration
logging_configuration:
level: INFO
console_level: WARNING
file_level: DEBUG
# Database mappings (if names differ between accounts)
database_mappings:
ANALYTICS_A: ANALYTICS_B
WAREHOUSE_A: WAREHOUSE_B
# Schema mappings
schema_mappings:
RAW: RAW_DATA
STAGING: STAGING_DATA
# Tables configuration
tables:
- fully_qualified_name: ANALYTICS_A.RAW.FACT_SALES
target_database: ANALYTICS_B
target_schema: RAW_DATA
use_column_selection_as_exclude_list: false
column_selection_list: []
index_column_list:
- SALE_ID
chunk_number: 50
max_failed_rows_number: 500
- fully_qualified_name: ANALYTICS_A.RAW.DIM_CUSTOMER
target_database: ANALYTICS_B
target_schema: RAW_DATA
use_column_selection_as_exclude_list: true
column_selection_list:
- INTERNAL_SCORE
- RISK_RATING
where_clause: "STATUS = 'ACTIVE'"
target_where_clause: "STATUS = 'ACTIVE'"
column_mappings:
CUST_KEY: CUSTOMER_KEY
CUST_NAME: CUSTOMER_NAME
Example 3: Cross-Region Replication Validation¶
# Global configuration
source_platform: Snowflake
target_platform: Snowflake
output_directory_path: /data/validation/region_replication
max_threads: 24
# Source connection (US East)
source_connection:
mode: name
name: us_east_connection
# Target connection (EU West)
target_connection:
mode: name
name: eu_west_connection
# Validation configuration
validation_configuration:
schema_validation: true
metrics_validation: true
row_validation: true
max_failed_rows_number: 150
# Comparison configuration
comparison_configuration:
tolerance: 0.005
# Tables configuration
tables:
# Large fact table with chunking
- fully_qualified_name: GLOBAL_DB.REPLICATION.TRANSACTIONS
use_column_selection_as_exclude_list: false
column_selection_list:
- TRANSACTION_ID
- CUSTOMER_ID
- AMOUNT
- TRANSACTION_DATE
- STATUS
index_column_list:
- TRANSACTION_ID
where_clause: "TRANSACTION_DATE >= DATEADD(day, -7, CURRENT_DATE())"
target_where_clause: "TRANSACTION_DATE >= DATEADD(day, -7, CURRENT_DATE())"
chunk_number: 30
# Dimension table
- fully_qualified_name: GLOBAL_DB.REPLICATION.PRODUCTS
use_column_selection_as_exclude_list: false
column_selection_list: []
index_column_list:
- PRODUCT_ID
# Reference table
- fully_qualified_name: GLOBAL_DB.REPLICATION.CURRENCIES
use_column_selection_as_exclude_list: false
column_selection_list: []
index_column_list:
- CURRENCY_CODE
Example 4: Database Copy Validation¶
# Validate a database copy within the same account
source_platform: Snowflake
target_platform: Snowflake
output_directory_path: ./db_copy_validation
max_threads: auto
# Use the same connection for both
source_connection:
mode: name
name: prod_connection
target_connection:
mode: name
name: prod_connection
# Validation configuration
validation_configuration:
schema_validation: true
metrics_validation: true
row_validation: false
# Comparison configuration
comparison_configuration:
tolerance: 0.001
# Tables to validate (source DB vs copied DB)
tables:
- fully_qualified_name: ORIGINAL_DB.PUBLIC.USERS
target_database: COPIED_DB
target_schema: PUBLIC
target_name: USERS
use_column_selection_as_exclude_list: false
column_selection_list: []
index_column_list:
- USER_ID
- fully_qualified_name: ORIGINAL_DB.PUBLIC.EVENTS
target_database: COPIED_DB
target_schema: PUBLIC
target_name: EVENTS
use_column_selection_as_exclude_list: false
column_selection_list: []
index_column_list:
- EVENT_ID
chunk_number: 20
Example 5: Snowflake View Validation¶
Validate Snowflake views alongside tables for comprehensive data verification.
source_platform: Snowflake
target_platform: Snowflake
output_directory_path: ./snowflake_view_validation
max_threads: auto
source_connection:
mode: name
name: source_connection
target_connection:
mode: name
name: target_connection
validation_configuration:
schema_validation: true
metrics_validation: true
row_validation: true
max_failed_rows_number: 50
comparison_configuration:
tolerance: 0.01
# Tables to validate
tables:
- fully_qualified_name: ANALYTICS_DB.PUBLIC.CUSTOMERS
use_column_selection_as_exclude_list: false
column_selection_list: []
index_column_list: [CUSTOMER_ID]
target_index_column_list: [CUSTOMER_ID]
# Views to validate
views:
# Basic view validation
- fully_qualified_name: ANALYTICS_DB.PUBLIC.V_CUSTOMER_SUMMARY
target_name: V_CUSTOMER_SUMMARY
use_column_selection_as_exclude_list: false
column_selection_list: []
index_column_list: [CUSTOMER_ID]
target_index_column_list: [CUSTOMER_ID]
# View with specific columns
- fully_qualified_name: ANALYTICS_DB.PUBLIC.V_SALES_METRICS
target_name: V_SALES_METRICS
use_column_selection_as_exclude_list: false
column_selection_list:
- REGION
- TOTAL_SALES
- ORDER_COUNT
- AVG_ORDER_VALUE
index_column_list: [REGION, PERIOD]
target_index_column_list: [REGION, PERIOD]
# View with filtering
- fully_qualified_name: ANALYTICS_DB.PUBLIC.V_ACTIVE_USERS
target_name: V_ACTIVE_USERS
use_column_selection_as_exclude_list: false
column_selection_list: []
index_column_list: [USER_ID]
target_index_column_list: [USER_ID]
where_clause: "LAST_LOGIN >= DATEADD(day, -30, CURRENT_DATE())"
target_where_clause: "LAST_LOGIN >= DATEADD(day, -30, CURRENT_DATE())"
# View with different target name
- fully_qualified_name: ANALYTICS_DB.PUBLIC.V_LEGACY_REPORT
target_database: MODERN_DB
target_schema: REPORTS
target_name: V_MODERNIZED_REPORT
use_column_selection_as_exclude_list: false
column_selection_list: []
index_column_list: [REPORT_ID]
target_index_column_list: [REPORT_ID]
column_mappings:
OLD_COL: NEW_COL
Note: View validation creates temporary tables internally to materialize view data for comparison between source and target Snowflake databases.
Troubleshooting Snowflake Connections¶
Issue: Connection Not Found¶
Symptom:
Connection 'connection_name' not found
Solutions:
Verify the connection name is correct:
# List available connections using Snowflake CLI snow connection list
Check your Snowflake connections configuration file
Ensure the connection file has proper permissions
Verify the connection name matches exactly (case-sensitive)
Issue: Authentication Failed¶
Symptom:
Authentication failed for user 'username'
Solutions:
Verify credentials are correct
Check if using correct authentication method:
Password authentication
Key pair authentication
SSO/OAuth
Verify user has necessary permissions:
-- Grant read permissions GRANT USAGE ON DATABASE database_name TO ROLE my_role; GRANT USAGE ON SCHEMA database_name.schema_name TO ROLE my_role; GRANT SELECT ON ALL TABLES IN SCHEMA database_name.schema_name TO ROLE my_role;
Check if account is correct (including region suffix)
Issue: Database/Schema Not Found¶
Symptom:
Database 'DATABASE_NAME' does not exist or not authorized
Solutions:
Verify database/schema names are correct (case-sensitive in Snowflake)
Check user has access to the database:
USE DATABASE database_name; USE SCHEMA schema_name; SHOW TABLES;
Verify the warehouse is running:
ALTER WAREHOUSE my_warehouse RESUME;
Issue: Cross-Account Access Denied¶
Symptom:
Access denied to account 'account_name'
Solutions:
Verify both accounts have correct connection configurations
Check if data sharing is properly configured between accounts
Verify network policies allow cross-account connections
Ensure both connections use appropriate credentials
Issue: Timeout Errors¶
Symptom:
Query timeout: Operation did not complete within the specified time
Solutions:
Increase warehouse size:
ALTER WAREHOUSE my_warehouse SET WAREHOUSE_SIZE = 'LARGE';
Enable chunking for large tables:
tables: - fully_qualified_name: large_table chunk_number: 50
Add WHERE clauses to limit data:
tables: - fully_qualified_name: large_table where_clause: "CREATED_DATE >= DATEADD(month, -1, CURRENT_DATE())"
Reduce thread count if warehouse is overloaded:
max_threads: 8
Best Practices for Snowflake-to-Snowflake Validation¶
Connection Management¶
Use named connections:
source_connection: mode: name name: source_account
Store credentials securely:
Use Snowflake CLI connection configuration
Leverage key pair authentication for production
Avoid hardcoding passwords
Use appropriate roles:
-- Create a read-only role for validation CREATE ROLE validation_reader; GRANT USAGE ON DATABASE db_name TO ROLE validation_reader; GRANT USAGE ON ALL SCHEMAS IN DATABASE db_name TO ROLE validation_reader; GRANT SELECT ON ALL TABLES IN DATABASE db_name TO ROLE validation_reader;
Performance Optimization¶
Size warehouses appropriately:
-- Use larger warehouse for big validations ALTER WAREHOUSE validation_wh SET WAREHOUSE_SIZE = 'MEDIUM';
Enable chunking for large tables:
tables: - fully_qualified_name: large_table chunk_number: 50
Use WHERE clauses to filter data:
tables: - fully_qualified_name: transactions where_clause: "TRANSACTION_DATE >= CURRENT_DATE() - 30"
Optimize thread count:
max_threads: 16 # Adjust based on warehouse capacity
Consider time-based filtering for incremental validation:
tables: - fully_qualified_name: events where_clause: "EVENT_TIMESTAMP >= '2024-01-01'" target_where_clause: "EVENT_TIMESTAMP >= '2024-01-01'"
Data Quality¶
Start with schema validation:
validation_configuration: schema_validation: true metrics_validation: false row_validation: false
Progress to metrics validation:
validation_configuration: schema_validation: true metrics_validation: true row_validation: false
Enable row validation selectively:
validation_configuration: row_validation: true tables: - fully_qualified_name: critical_fact_table # Row validation enabled for critical tables
Cross-Account/Region Considerations¶
Account for replication lag:
Allow time for replication to complete before validation
Use time-based filters that account for lag
Handle naming differences:
database_mappings: SOURCE_DB: TARGET_DB schema_mappings: SOURCE_SCHEMA: TARGET_SCHEMA
Monitor costs:
Cross-region data transfer incurs costs
Schedule validations during off-peak hours
Use sampling for initial validation
Use appropriate tolerance:
comparison_configuration: tolerance: 0.01 # Allow for minor differences