SnowConvert AI - Oracle - Oracle Built-in Data Types

Extended Data Types

Description

Beginning with Oracle Database 12_c_, you can specify a maximum size of 32767 bytes for the VARCHAR2, NVARCHAR2, and RAW data types. You can control whether your database supports this new maximum size by setting the initialization parameter MAX_STRING_SIZE.

A VARCHAR2 or NVARCHAR2 data type with a declared size of greater than 4000 bytes, or a RAW data type with a declared size of greater than 2000 bytes, is an extended data type. (Oracle SQL Language Reference Extended Data Type).

Oracle allows increasing the database max string size from STANDARD to EXTENDED, however, Snowflake does not contain an equivalent for this functionality.

Therefore VARCHAR2, NVARCHAR2 and RAW extended Data Types are not supported in Snowflake, and they are transformed just as regular VARCHAR2, NVARCHAR2, and RAW data types. Check Character Data Types and RAW Data Types for more information.

Known Issues

1. MAX STRING SIZE not recognized

ALTER SYSTEM SET MAX_STRING_SIZE='EXTENDED';

Is not being parsed by SnowConvert.

JSON Data Type

Description

Oracle Database supports JSON natively with relational database features, including transactions, indexing, declarative querying, and views. Unlike relational data, JSON data can be stored in the database, indexed, and queried without any need for a schema that defines the data. (Oracle SQL Language Reference JSON Data Type).

The JSON data types are transformed to VARIANT in order to emulate the Oracle behavior.

JSON
Copy

Sample Source Patterns

JSON Data Type as a column in Create Table

Oracle
CREATE TABLE jsontable (
	json_column JSON
);

INSERT INTO jsontable VALUES('{"id": 1, "content":"json content"}');
INSERT INTO jsontable VALUES('{"stringdata": "this is a text","number": 1,"numberNeg": -1,"booleanT": true,"booleanGF": false,"nullvalue": null,"object": {"1": 1,"2": 2},"array": [1, 2, 3]}');
INSERT INTO jsontable VALUES(JSON('{"id": 4}'));
 
SELECT  * FROM jsontable;
Copy
Result

COL1

{“id”:1,”content”:”json content”}

{“stringdata”:”this is a text”,”number”:1,”numberNeg”:-1,”booleanT”:true,”booleanGF”:false,”nullvalue”:null,”object”:{“1”:1,”2”:2},”array”:[1,2,3]}

{“id”:4}

Snowflake
CREATE OR REPLACE TABLE jsontable (
	json_column VARIANT
)
COMMENT = '{"origin":"sf_sc","name":"snowconvert","version":{"major":1, "minor":0},{"attributes":{"component":"oracle"}}'
;

INSERT INTO jsontable
VALUES('{"id": 1, "content":"json content"}');

INSERT INTO jsontable
VALUES('{"stringdata": "this is a text","number": 1,"numberNeg": -1,"booleanT": true,"booleanGF": false,"nullvalue": null,"object": {"1": 1,"2": 2},"array": [1, 2, 3]}');

INSERT INTO jsontable
VALUES(JSON('{"id": 4}') !!!RESOLVE EWI!!! /*** SSC-EWI-0073 - PENDING FUNCTIONAL EQUIVALENCE REVIEW FOR 'JSON' NODE ***/!!!);

SELECT  * FROM
	jsontable;
Copy

Warning

JSON data insertions are not being correctly handled. Check the Recommendations section for workarounds.

Known Issues

1. JSON data insertions

JSON data insertions are not being correctly handled by SnowConvert.

2. JSON objects manipulation

The usages of JSON objects (columns, variables, or parameters) are not correctly converted by SnowConvert AI. Check the Recommendations section for workarounds

Recommendations

1. JSON Data Type translation workaround

JSON datatype is translated to VARIANT, so the information can be formatted using the Snowflake PARSE_JSON function. This approach will allow you to store, query, and operate the JSON data in Snowflake using similar syntax as Oracle.

Oracle
CREATE TABLE jsontable (
	json_column JSON
);

INSERT INTO jsontable VALUES('{"id": 1, "content":"json content"}');
INSERT INTO jsontable VALUES('{"id": 2, "content": {"header": "header text one", "content": "content text one"}}');
INSERT INTO jsontable VALUES('{"id": 3, "content": {"header": "header tex two", "content": "content text two"}}');

SELECT * FROM jsontable;
SELECT 'ID: ' || jt.json_column.id, 'HEADER: ' || UPPER(jt.json_column.content.header) FROM jsontable jt;
Copy
Result 1

JSON_SERIALIZE(JSON_COLUMN)

{“id”:1,”content”:”json content”}

{“id”:2,”content”:{“header”:”header text one”,”content”:”content text one”}}

{“id”:3,”content”:{“header”:”header tex two”,”content”:”content text two”}}

Result 2

‘ID:’ JT.JSON_COLUMN.ID

‘HEADER:’ UPPER(JT.JSON_COLUMN.CONTENT.HEADER)

ID: 1

HEADER:

ID: 2

HEADER: “HEADER TEXT ONE”

ID: 3

HEADER: “HEADER TEX TWO”

Snowflake
CREATE OR REPLACE TABLE jsontable (
	json_column VARIANT
)
COMMENT = '{"origin":"sf_sc","name":"snowconvert","version":{"major":1, "minor":0},{"attributes":{"component":"oracle"}}'
;

INSERT INTO jsontable
VALUES('{"id": 1, "content":"json content"}');

INSERT INTO jsontable
VALUES('{"id": 2, "content": {"header": "header text one", "content": "content text one"}}');

INSERT INTO jsontable
VALUES('{"id": 3, "content": {"header": "header tex two", "content": "content text two"}}');

SELECT * FROM
	jsontable;

SELECT 'ID: ' || NVL(jt.json_column.id :: STRING, ''), 'HEADER: ' || NVL(UPPER(jt.json_column.content.header) :: STRING, '') FROM
	jsontable jt;
Copy
Result 1

JSON_COLUMN

{ “content”: “json content”, “id”: 1}

{ “content”: { “content”: “content text one”, “header”: “header text one” }, “id”: 2}

{ “content”: { “content”: “content text two”, “header”: “header tex two” }, “id”: 3}

Result 2

‘ID: ‘ JT.JSON_COLUMN:ID

‘HEADER: ‘ UPPER(JT.JSON_COLUMN:CONTENT:HEADER)

ID: 1

ID: 2

HEADER: HEADER TEXT ONE

ID: 3

HEADER: HEADER TEX TWO

Note

You must use SELECT as the INSERT INTO argument instead of the VALUES clause to use the PARSE_JSON function.

Note

Use the ‘:’ instead of the ‘.’ operator to access the JSON object properties. It allows several levels of nesting in both engines.

Related EWIs

  1. SSC-EWI-0073: Pending Functional Equivalence Review

LONG Data Type

LONG columns store variable-length character strings containing up to 2 gigabytes -1, or 231-1 bytes. LONG columns have many of the characteristics of VARCHAR2 columns. You can use LONG columns to store long text strings. The length of LONG values may be limited by the memory available on your computer. (Oracle SQL Language Reference Long Data Type)

LONG
Copy

Sample Source Patterns

Long in Create Table

Oracle
CREATE TABLE long_table
( 
     id 	  NUMBER,
     long_column  LONG
);
     
 INSERT INTO long_table VALUES (1, 'this is a text');
Copy
Snowflake
CREATE OR REPLACE TABLE long_table
 (
      id NUMBER(38, 18) /*** SSC-FDM-0006 - NUMBER TYPE COLUMN MAY NOT BEHAVE SIMILARLY IN SNOWFLAKE. ***/,
      long_column VARCHAR
 )
 COMMENT = '{"origin":"sf_sc","name":"snowconvert","version":{"major":1, "minor":0},{"attributes":{"component":"oracle"}}'
 ;

 INSERT INTO long_table
 VALUES (1, 'this is a text');
Copy

Retrieving data from a Long column

Oracle
SELECT long_column FROM long_table;
Copy
Result

LONG_COLUMN

this is a text

Snowflake
SELECT long_column FROM
long_table;
Copy
Result

LONG_COLUMN

this is a text

Known Issues

1. The max length of long (Oracle) and varchar (Snowflake) are different

According to Oracle documentation, Long column can store up to 2 gigabytes of data, but Snowflake varchar is limited to 16Mb.

2. Cast of Long column

Long data type only can be cast to CLOB data type, and the only way to achieve this is using the TO_LOB function, this function only works if is used in the select list of a subquery in an INSERT statement. Consider the following sample

Oracle
CREATE TABLE target_table (col CLOB);

INSERT INTO target_table (SELECT TO_LOB(long_column) FROM long_table);
Copy

Warning

If the target table column data type is different from CLOB, Oracle may insert null values or display an error when attempting to insert the data.

Related EWIs

  1. SSC-FDM-0006: Number type column may not behave similarly in Snowflake

RAW and LONG RAW Data types

Description

The RAW and LONG RAW data types store data that is not to be explicitly converted by Oracle Database when moving data between different systems. These data types are intended for binary data or byte strings. (Oracle SQL Language Reference Row and Long Raw Data Types)

{ LONG RAW | RAW (size) }
Copy

Sample Source Patterns

Raw and Long Raw in Create Table

Oracle
CREATE TABLE raw_table
(    
     id INTEGER,
     raw_column RAW(2000),
     long_raw_column LONG RAW
);
  
INSERT  INTO raw_table values(1, 'FF00FF00FF', 'FF00FF00FFAABAABABABABA917843210984237123ABABABABAABBAAABBACDFFD');
INSERT  INTO raw_table values(2, 'AAAAAAAAAA', 'ABABABABABABABABABABABABABABABAbABAbABAABABAAABABABABABABABABABABA');
--Insert with largest string posible (2000 HEX characters) 
INSERT INTO raw_table VALUES (3, 'AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA', 'AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA')
Copy
Snowflake CREATE OR REPLACE TABLE raw_table
CREATE OR REPLACE TABLE raw_table
     (
          id INTEGER,
          raw_column BINARY,
          long_raw_column BINARY
     )
     COMMENT = '{"origin":"sf_sc","name":"snowconvert","version":{"major":1, "minor":0},{"attributes":{"component":"oracle"}}'
     ;

     INSERT  INTO raw_table
     values(1, 'FF00FF00FF', 'FF00FF00FFAABAABABABABA917843210984237123ABABABABAABBAAABBACDFFD');

     INSERT  INTO raw_table
     values(2, 'AAAAAAAAAA', 'ABABABABABABABABABABABABABABABAbABAbABAABABAAABABABABABABABABABABA');

     --Insert with largest string posible (2000 HEX characters) 
INSERT INTO raw_table
     VALUES (3, 'AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA', 'AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA');
Copy

Retrieving data from Raw and Long Raw column

Oracle
SELECT * FROM raw_table ORDER BY id;
Copy
Result

ID

RAW_COLUMN

LONG_RAW_COLUMN

1

ªº««««© 2 B7 :ºººº«ºª»¬ßý

2

ªªªªª

«««««««««««««««««««ªººªºººººººººº

3

ªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªª

ªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªª

Snowflake
SELECT * FROM
raw_table
ORDER BY id;
Copy
Result

ID

RAW_COLUMN

LONG_RAW_COLUMN

1

ªº««««© 2 B7 :ºººº«ºª»¬ßý

2

ªªªªª

«««««««««««««««««««ªººªºººººººººº

3

ªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªª

ªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªªª

Known Issues

No issues were found.

Related EWIs

No related EWIs.

Numeric Data Types

Description

The Oracle Database numeric data types store positive and negative fixed and floating-point numbers, zero, infinity, and values that are the undefined result of an operation—“not a number” or NAN. (Oracle Language Reference Numeric Data Types)

Notes on arithmetic operations

Please be aware that every operation performed on numerical datatypes is internally stored as a Number. Furthermore, depending on the operation performed it is possible to incur an error related to how intermediate values are stored within Snowflake, for more information on Snowflake’s post on intermediate numbers in Snowflake.

FLOAT Data Type

Description

The FLOAT data type is a subtype of NUMBER. It can be specified with or without precision, which has the same definition it has forNUMBERand can range from 1 to 126. Scale cannot be specified but is interpreted from the data. (Oracle Language Reference Float Data Type)

Warning

Notes on arithmetic operations

Please be aware that every operation performed on numerical datatypes is internally stored as a Number. Furthermore, depending on the operation performed it is possible to incur an error related to how intermediate values are stored within Snowflake, for more information please check this post on Snowflake’s post on intermediate numbers in Snowflake.

Sample Source Patterns

Please, consider the following table and its inserts for the examples below:

Float data type in Create Table

Oracle
CREATE TABLE float_data_type_table(
col1 FLOAT,
col2 FLOAT(5),
col3 FLOAT(126)
);

INSERT INTO float_data_type_table (col1) VALUES (100.55555);
INSERT INTO float_data_type_table (col1) VALUES (1.9);
INSERT INTO float_data_type_table (col2) VALUES (1.23);
INSERT INTO float_data_type_table (col2) VALUES (7.89);
INSERT INTO float_data_type_table (col2) VALUES (12.79);
INSERT INTO float_data_type_table (col2) VALUES (123.45);
INSERT INTO float_data_type_table (col3) VALUES (1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111.99999999999999999999555555);
Copy
Snowflake
CREATE OR REPLACE TABLE float_data_type_table (
col1 FLOAT,
col2 FLOAT(5),
col3 FLOAT(126)
)
COMMENT = '{"origin":"sf_sc","name":"snowconvert","version":{"major":1, "minor":0},{"attributes":{"component":"oracle"}}'
;

INSERT INTO float_data_type_table(col1) VALUES (100.55555);

INSERT INTO float_data_type_table(col1) VALUES (1.9);

INSERT INTO float_data_type_table(col2) VALUES (1.23);

INSERT INTO float_data_type_table(col2) VALUES (7.89);

INSERT INTO float_data_type_table(col2) VALUES (12.79);

INSERT INTO float_data_type_table(col2) VALUES (123.45);

INSERT INTO float_data_type_table(col3) VALUES (1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111.99999999999999999999555555);
Copy

FLOAT

There are no differences between Oracle and Snowflake regarding FLOAT data type without precision.

Oracle
SELECT col1 FROM float_data_type_table;
Copy
Result

col1

100.55555

1.9

Snowflake
SELECT col1 FROM
float_data_type_table;
Copy
Result

col1

100.55555

1.9

FLOAT ( p )

Queries results may not be equivalent when the precision (p) is specified in theFLOATdata type. There are small rounding differences.

Oracle
SELECT col2 FROM float_data_type_table;

SELECT col3 FROM float_data_type_table;
Copy
Result

col2

1.2

7.9

13

120

col3

—————————————————————————————————-

1111111111111111111111111111111111111100000000000000000000000000000000000000000000000000000000000000

Snowflake
SELECT col2 FROM
float_data_type_table;

SELECT col3 FROM
float_data_type_table;
Copy
Result

col2

1.23

7.89

12.79

123.45

col3

—————————————————————————————————-

1111111111111111000000000000000000000000000000000000000000000000000000000000000000000000000000000000

Known Issues

1. FLOAT data type with precision

When the FLOAT data type has precision, the queries results may have small rounding differences.

Related EWIs

No related EWIs.

NUMBER Data Type

Description

The NUMBER data type stores zero as well as positive and negative fixed numbers with absolute values from 1.0 x 10-130 to but not including 1.0 x 10126. If you specify an arithmetic expression whose value has an absolute value greater than or equal to 1.0 x 10126, then Oracle returns an error. Each NUMBER value requires from 1 to 22 bytes. (Oracle Language Reference Number Data Type).

The NUMBER data type can be specified using the following form NUMBER(p, s) (both parameters are optional) where:

  • p is the precision or the maximum number of significant decimal digits, where the most significant digit is the left-most nonzero digit, and the least significant digit is the right-most known digit. The precision can range from 0 to 38.

  • s is the scale or the number of digits from the decimal point to the least significant digit. The scale can range from -84 to 127.

On Oracle, not specifying precision (using NUMBER or NUMBER(*)) causes the column to be created as an “undefined precision”. This means that Oracle will store values dynamically, allowing to store any number within that column. Snowflake does not support this functionality; for this reason, they will be changed to NUMBER(38, 18), allowing to store the widest variety of numbers.

Warning

Notes on arithmetic operations

Please be aware that every operation performed on numerical data types is internally stored as a Number. Furthermore, depending on the operation performed it is possible to incur an error related to how intermediate values are stored within Snowflake, for more information please check this post on Snowflake’s post on intermediate numbers in Snowflake or check the functional equivalence message SSC-FDM-0006.

Sample Source Patterns

Please, consider the following table and its inserts for the examples below:

Number data types in Create Table

Oracle
CREATE TABLE number_data_type_table
(
col1 NUMBER,
col2 NUMBER(1),
col3 NUMBER(10, 5),
col4 NUMBER(5, -2),
col5 NUMBER(4, 5)
);

INSERT INTO number_data_type_table(COL1) VALUES(100);
INSERT INTO number_data_type_table(COL2) VALUES(1.99999);
INSERT INTO number_data_type_table(COL3) VALUES(12345.12345);
INSERT INTO number_data_type_table(COL4) VALUES(16430.55555);
INSERT INTO number_data_type_table (COL4) VALUES(17550.55555);
INSERT INTO number_data_type_table(COL5) VALUES(0.00009);
INSERT INTO number_data_type_table(COL5) VALUES(0.000021);
INSERT INTO number_data_type_table(COL5) VALUES(0.012678912);
Copy
Snowflake
CREATE OR REPLACE TABLE number_data_type_table
(
col1 NUMBER(38, 18) /*** SSC-FDM-0006 - NUMBER TYPE COLUMN MAY NOT BEHAVE SIMILARLY IN SNOWFLAKE. ***/,
col2 NUMBER(1) /*** SSC-FDM-0006 - NUMBER TYPE COLUMN MAY NOT BEHAVE SIMILARLY IN SNOWFLAKE. ***/,
col3 NUMBER(10, 5) /*** SSC-FDM-0006 - NUMBER TYPE COLUMN MAY NOT BEHAVE SIMILARLY IN SNOWFLAKE. ***/,
col4 NUMBER(5) !!!RESOLVE EWI!!! /*** SSC-EWI-OR0092 - NUMBER DATATYPE NEGATIVE SCALE WAS REMOVED FROM OUTPUT ***/!!! /*** SSC-FDM-0006 - NUMBER TYPE COLUMN MAY NOT BEHAVE SIMILARLY IN SNOWFLAKE. ***/,
col5 NUMBER(5, 5) /*** SSC-FDM-OR0010 - NUMBER DATATYPE SMALLER PRECISION WAS INCREASED TO MATCH SCALE ***/ /*** SSC-FDM-0006 - NUMBER TYPE COLUMN MAY NOT BEHAVE SIMILARLY IN SNOWFLAKE. ***/
)
COMMENT = '{"origin":"sf_sc","name":"snowconvert","version":{"major":1, "minor":0},{"attributes":{"component":"oracle"}}'
;

INSERT INTO number_data_type_table(COL1) VALUES(100);

INSERT INTO number_data_type_table(COL2) VALUES(1.99999);

INSERT INTO number_data_type_table(COL3) VALUES(12345.12345);

INSERT INTO number_data_type_table(COL4) VALUES(16430.55555);

INSERT INTO number_data_type_table(COL4) VALUES(17550.55555);

INSERT INTO number_data_type_table(COL5) VALUES(0.00009);

INSERT INTO number_data_type_table(COL5) VALUES(0.000021);

INSERT INTO number_data_type_table(COL5) VALUES(0.012678912);
Copy

NUMBER ( default case )

When the precision and the scale are not specified, the default values are the maximum availableNUMBER(38, 127) . The current transformation for the default case is NUMBER(38,19).

Warning

In Oracle, not defining Precision nor scale defaults to an “Undefined Precision and Scale”. It behaves by storing the input “as received”, which means it can both deal with Integer and Floating point numbers. We use 38, 18 to try to cover both of them, by using 20 for integers, and leaving 18 for floating-point digits.

Oracle
SELECT col1 FROM number_data_type_table;
Copy
Result

col1

100

Snowflake
SELECT col1 FROM
number_data_type_table;
Copy
Result

col1

100.0000000000000000000

NUMBER ( p )

In this case, the precision will specify the number of digits that the number could have at the left of the decimal point.

Oracle
SELECT col2 FROM number_data_type_table;
Copy
Result

col2

2

Snowflake
SELECT col2 FROM
number_data_type_table;
Copy
Result

col2

2

NUMBER ( p, s ) p > s

In the case where the s is lower than the p, the precision will specify the number of digits that the number could have. The scale will specify the number of significant digits to the right of the decimal point, so the number of digits at the left of the decimal point will depend on the scale specified.

Oracle
SELECT col3 FROM number_data_type_table;
Copy
Result

col3

12345.12345

Snowflake
SELECT col3 FROM
number_data_type_table;
Copy
Result

col3

12345.12345

NUMBER ( p, -s )

A negative scale is the number of significant digits to the left of the decimal point, to but not including the least significant digit. For the negative scale, the least significant digit is on the left side of the decimal point, because the actual data is rounded to the specified number of places to the left of the decimal point. The current transformation is to remove the negative scale.

Oracle
SELECT col4 FROM number_data_type_table;
Copy
Result

col4

16400

17600

Snowflake
SELECT col4 FROM
number_data_type_table;
Copy
Result

col4

16431

17551

NUMBER ( p, s ) s > p

When the scale is greater than the precision, consider the following aspects:

  • The number to insert could not have significant digits to the left of the decimal point. Only zero is available.

  • The first digit to the right of the decimal point must be zero.

  • The precision specifies the maximum number of significant digits to the right of the decimal point.

Oracle
SELECT col5 FROM number_data_type_table;
Copy
Result

col5

0.00009

0.00002

0.01268

Snowflake
SELECT col5 FROM
number_data_type_table;
Copy
Result

col5

0.00009

0.00002

0.01268

Known Issues

1. Scale value exceeds the maximum allowed by Snowflake

When specifying a scale greater than the maximum allowed in Snowflake (37) it is being changed to 18. To get more information about this please go to the SSC-FDM-0006 documentation.

2. Negative scale

Snowflake does not allow negative scale, so it is being removed. This could cause functional inequivalence. To get more information about this issue please go to the SSC-EWI-0R0092 documentation.

Recommendations

1. UDF for NUMBER datatype Operations

It is possible to migrate these operations manually by using the next UDF when performing arithmetic operations to avoid incurring the issues noted:

UDF
CREATE OR REPLACE FUNCTION fixed_divide(a NUMBER(38,19), b NUMBER(38,19))
RETURNS NUMBER(38,19)
LANGUAGE JAVA
CALLED ON NULL INPUT
HANDLER='TestFunc.divide'
AS
'
import java.math.BigDecimal;
import java.math.RoundingMode;
class TestFunc {
public static BigDecimal divide(BigDecimal a, BigDecimal b) {
return a.divide(b,RoundingMode.HALF_UP);
}
}';
Copy

Related EWIs

  1. SSC-EWI-OR0092 Number datatype negative scale was removed from output.

  2. SSC-FDM-0006: Number type column may not behave similarly in Snowflake

  3. SSC-FDM-OR0010 Number datatype smaller precision was increased to match scale

Floating-Point Numbers

Description

Floating-point numbers can have a decimal point anywhere from the first to the last digit or can have no decimal point at all. An exponent may optionally be used following the number to increase the range, for example, 1.777 e-20. A scale value is not applicable to floating-point numbers, because the number of digits that can appear after the decimal point is not restricted.Binary floating-point numbers are stored using binary precision (the digits 0 and 1)(Oracle Language Reference Floating-Point Numbers)

BINARY_DOUBLE

Description

BINARY_DOUBLE is a 64-bit, double-precision floating-point number data type. Each BINARY_DOUBLE value requires 8 bytes. In a BINARY_DOUBLE column, floating-point numbers have binary precision. The binary floating-point numbers support the special values infinity and NaN (not a number). (Oracle Language Reference Binary_Double data type)

It is possible to specify floating-point numbers within the next limits:

  • Maximum positive finite value = 1.79769313486231E+308

  • Minimum positive finite value = 2.22507485850720E-308

Sample Source Patterns

Please, consider the following table and its inserts for the example below:

Binary Double in Create Table

Oracle
CREATE TABLE binary_double_data_type_table
(
COL1 BINARY_DOUBLE
);

INSERT INTO binary_double_data_type_table VALUES(2.22507485850720E-308D);
INSERT INTO binary_double_data_type_table VALUES(1.79769313486231E+308D);
INSERT INTO binary_double_data_type_table VALUES('NaN');
Copy
Snowflake
CREATE OR REPLACE TABLE binary_double_data_type_table
(
COL1 FLOAT
)
COMMENT = '{"origin":"sf_sc","name":"snowconvert","version":{"major":1, "minor":0},{"attributes":{"component":"oracle"}}'
;

INSERT INTO binary_double_data_type_table
VALUES(2.22507485850720E-308);

INSERT INTO binary_double_data_type_table
VALUES(1.79769313486231E+308);

INSERT INTO binary_double_data_type_table
VALUES('NaN');
Copy

Note

‘NaN’ means Not a Number, this value is allowed by theBINARY_DOUBLE data type in Oracle and by theFLOATdata type in Snowflake.

BINARY_DOUBLE -> FLOAT

Since theBINARY_DOUBLEdata type is not supported by Snowflake it is being converted to FLOAT.

Oracle
SELECT * FROM binary_double_data_type_table;
Copy
Result

col1

0

179769313486231000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

NaN

Snowflake
SELECT * FROM
binary_double_data_type_table;
Copy
Result

col1

0

179769313486231000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

NaN

Known Issues

1. The BINARY_DOUBLE data type is not supported by Snowflake

The BINARY_DOUBLE data type is converted to FLOAT since it is not supported by Snowflake.

Related EWIs

No related EWIs.

BINARY_FLOAT

Description

BINARY_FLOAT is a 32-bit, single-precision floating-point number data type. EachBINARY_FLOATvalue requires 4 bytes. In a BINARY_FLOATcolumn, floating-point numbers have binary precision. The binary floating-point numbers support the special values infinity and NaN (not a number). (Oracle Language Reference Binary_Float data type)

It is possible to specify floating-point numbers within the next limits:

  • Maximum positive finite value = 3.40282E+38F

  • Minimum positive finite value = 1.17549E-38F

Sample Source Patterns

Please, consider the following table and its inserts for the example below:

Binary Float in Create Table

Oracle
CREATE TABLE binary_float_data_type_table
(
col1 BINARY_FLOAT
);

INSERT INTO binary_float_data_type_table VALUES(1.17549E-38F);
INSERT INTO binary_float_data_type_table VALUES(3.40282E+38F);
INSERT INTO binary_float_data_type_table VALUES('NaN');
Copy
Snowflake
CREATE OR REPLACE TABLE binary_float_data_type_table
(
col1 FLOAT
)
COMMENT = '{"origin":"sf_sc","name":"snowconvert","version":{"major":1, "minor":0},{"attributes":{"component":"oracle"}}'
;

INSERT INTO binary_float_data_type_table
VALUES(1.17549E-38);

INSERT INTO binary_float_data_type_table
VALUES(3.40282E+38);

INSERT INTO binary_float_data_type_table
VALUES('NaN');
Copy

Note

‘NaN’ means Not a Number, this value is allowed by theBINARY_FLOAT data type in Oracle and by theFLOATdata type in Snowflake.

BINARY_FLOAT -> FLOAT

Since theBINARY_FLOATdata type is not supported by Snowflake it is being converted to FLOAT.

Oracle
SELECT * FROM binary_float_data_type_table;
Copy
Result

col1

0

340282001837565600000000000000000000000

NaN

Snowflake
SELECT * FROM binary_float_data_type_table;
Copy
Result

col1

0

340282000000000000000000000000000000000

NaN

Known Issues

1. The BINARY_FLOAT data type is not supported by Snowflake

The BINARY_FLOAT data type is converted to FLOAT since it is not supported by Snowflake.

Related EWIs

No related EWIs.

Datetime and Interval Data Types

The datetime data types are DATE, TIMESTAMP, TIMESTAMP WITH TIME ZONE, and TIMESTAMP WITH LOCAL TIME ZONE. Values of datetime data types are sometimes called datetimes. The interval data types are INTERVAL YEAR TO MONTH and INTERVAL DAY TO SECOND. Values of interval data types are sometimes called intervals. (Oracle SQL Language Reference Datetime and Interval Data Types)

DATE Data Type

Description

Oracle’s date data type stores both date and time information, however Snowflake’s date data type only stores date information. (Oracle SQL Language Reference Date Data Type)

The default transformation for Oracle DATE is to Snowflake TIMESTAMP. You can add the disableDateAsTimestamp flag (SnowConvert AI Command Line Interface) or disable the Transform Date as Timestamp setting (SnowConvert AI desktop application) in order to transform the DATE type to TIMESTAMP. Keep in mind that Snowflake DATE only stores date information and Oracle stores date and time information, if you want to avoid losing information you should transform DATE to TIMESTAMP.

DATE
Copy

Sample Source Patterns

Date in Create Table

Oracle
CREATE TABLE date_table
(
	date_col date
);

INSERT INTO date_table(date_col) VALUES (DATE '2010-10-10');
Copy
Snowflake without –disableDateAsTimestamp flag or with “Transform Date as Timestamp” setting enabled
CREATE OR REPLACE TABLE date_table
	(
		date_col TIMESTAMP /*** SSC-FDM-OR0042 - DATE TYPE COLUMN HAS A DIFFERENT BEHAVIOR IN SNOWFLAKE. ***/
	)
	COMMENT = '{"origin":"sf_sc","name":"snowconvert","version":{"major":1, "minor":0},"attributes":{"component":"oracle"}}'
	;

	INSERT INTO date_table(date_col) VALUES (DATE '2010-10-10');
Copy
Snowflake with –disableDateAsTimestamp flag or with “Transform Date as Timestamp” setting disabled
CREATE OR REPLACE TABLE date_table
	(
		date_col date
	)
	COMMENT = '{"origin":"sf_sc","name":"snowconvert","version":{"major":1, "minor":0},{"attributes":{"component":"oracle"}}'
	;

	INSERT INTO date_table(date_col) VALUES (DATE '2010-10-10');
Copy

Retrieving data from a Date column

Oracle
SELECT date_col FROM date_table;
Copy
Result

DATE_COL

2010-10-10 00:00:00.000

Snowflake
SELECT date_col FROM
date_table;
Copy
Result

DATE_COL

2010-10-10 00:00:00.000

Result with disableDateAsTimestamp flag

DATE_COL

2010-10-10

Known Issues

1. Input and output format may differ between languages

In Snowflake, DATE input and output formats depend on the DATE_INPUT_FORMAT and DATE_OUTPUT_FORMAT session variables. Insertions may fail because the DATE_INPUT_FORMAT enforces the user to use a specific format when a date is added by text. You can modify those variables using the following syntax.

ALTER SESSION SET DATE_INPUT_FORMAT = 'YYYY-DD-MM' DATE_OUTPUT_FORMAT = 'DD-MM-YYYY';
Copy

Related EWIs

  1. SSC-FDM-OR0042: Date Type Transformed To Timestamp Has A Different Behavior

INTERVAL DAY TO SECOND Data Type

Description

INTERVAL DAY TO SECOND stores a period of time in terms of days, hours, minutes, and seconds. (Oracle SQL Language Reference INTERVAL DAY TO SECOND Data Type)

There is no equivalent for this data type in Snowflake, it is currently transformed to VARCHAR.

INTERVAL DAY [(day_precision)] TO SECOND [(fractional_seconds_precision)]
Copy

Sample Source Patterns

Interval Day to Second in Create Table

Oracle
CREATE TABLE interval_day_to_second_table
(
	interval_day_col1 interval day to second,
	interval_day_col2 interval day(1) to second(4)
);

INSERT INTO interval_day_to_second_table(interval_day_col1) VALUES ( INTERVAL '1 2:3:4.56' DAY TO SECOND ); 
INSERT INTO interval_day_to_second_table(interval_day_col2) VALUES ( INTERVAL '1 2:3:4.56' DAY(1) TO SECOND(4) );
Copy
Snowflake
CREATE OR REPLACE TABLE interval_day_to_second_table
	(
		interval_day_col1 VARCHAR(20) !!!RESOLVE EWI!!! /*** SSC-EWI-0036 - INTERVAL day to second DATA TYPE CONVERTED TO VARCHAR ***/!!!,
		interval_day_col2 VARCHAR(20) !!!RESOLVE EWI!!! /*** SSC-EWI-0036 - INTERVAL day(1) to second(4) DATA TYPE CONVERTED TO VARCHAR ***/!!!
	)
	COMMENT = '{"origin":"sf_sc","name":"snowconvert","version":{"major":1, "minor":0},{"attributes":{"component":"oracle"}}'
	;

	INSERT INTO interval_day_to_second_table(interval_day_col1) VALUES ('1d, 2h, 3m, 4s, 56ms');

	INSERT INTO interval_day_to_second_table(interval_day_col2) VALUES ('1d, 2h, 3m, 4s, 56ms');
Copy

The Interval value is transformed to a supported Snowflake format and then inserted as text inside the column. Since Snowflake does not support Interval as a data type, it is only supported in arithmetic operations. In order to use the value, it needs to be extracted and used as an Interval constant (if possible).

Original Oracle value: INTERVAL '1 2:3:4.567' DAY TO SECOND

Value stored in Snowflake column: '1d, 2h, 3m, 4s, 567ms'

Value as Snowflake Interval constant: INTERVAL '1d, 2h, 3m, 4s, 567ms'

Retrieving data from an Interval Day to Second column

Oracle
SELECT * FROM interval_day_to_second_table;
Copy
Result

INTERVAL_DAY_COL1

INTERVAL_DAY_COL2

1 2:3:4.567

1 2:3:4.567

Snowflake
SELECT * FROM
interval_day_to_second_table;
Copy
Result

INTERVAL_DAY_COL1

INTERVAL_DAY_COL2

1d, 2h, 3m, 4s, 56ms

1d, 2h, 3m, 4s, 56ms

Known Issues

1. Only arithmetic operations are supported

Snowflake Intervals have several limitations. Only arithmetic operations between DATE or TIMESTAMP and Interval Constants are supported, every other scenario is not supported.

Related EWIs

  1. SSC-EWI-0036: Data type converted to another data type.

INTERVAL YEAR TO MONTH Data Type

Description

INTERVAL YEAR TO MONTH stores a period of time using the YEAR and MONTH datetime fields. There is no equivalent in Snowflake so it is transformed to Varchar (Oracle SQL Language Reference INTERVAL YEAR TO MONTH Data Type)

There is no equivalent for this data type in Snowflake, it is currently transformed to VARCHAR.

INTERVAL YEAR [(year_precision)] TO MONTH
Copy

Sample Source Patterns

Interval Year To Month in Create Table

Oracle
CREATE TABLE interval_year_to_month_table
(
	interval_year_col1 interval year to month,
	interval_year_col2 interval year(4) to month
);

INSERT INTO interval_year_to_month_table(interval_year_col1) VALUES ( INTERVAL '1-2' YEAR TO MONTH ); 
INSERT INTO interval_year_to_month_table(interval_year_col2) VALUES ( INTERVAL '1000-11' YEAR(4) TO MONTH );
Copy
Snowflake
CREATE OR REPLACE TABLE interval_year_to_month_table
	(
		interval_year_col1 VARCHAR(20) !!!RESOLVE EWI!!! /*** SSC-EWI-0036 - INTERVAL year to month DATA TYPE CONVERTED TO VARCHAR ***/!!!,
		interval_year_col2 VARCHAR(20) !!!RESOLVE EWI!!! /*** SSC-EWI-0036 - INTERVAL year(4) to month DATA TYPE CONVERTED TO VARCHAR ***/!!!
	)
	COMMENT = '{"origin":"sf_sc","name":"snowconvert","version":{"major":1, "minor":0},{"attributes":{"component":"oracle"}}'
	;

	INSERT INTO interval_year_to_month_table(interval_year_col1) VALUES ('1y, 2mm');

	INSERT INTO interval_year_to_month_table(interval_year_col2) VALUES ('1000y, 11mm');
Copy

The Interval value is transformed to a supported Snowflake format and then inserted as text inside the column. Since Snowflake does not support Interval as a data type, it is only supported in arithmetic operations. In order to use the value, it needs to be extracted and used as an Interval constant (if possible).

Original Oracle value: INTERVAL '1-2' YEAR TO MONTH

Value stored in Snowflake column: '1y, 2m'

Value as Snowflake Interval constant: INTERVAL '1y, 2m'

Retrieving data from an Interval Year To Month column

Oracle
SELECT * FROM interval_year_to_month_table;
Copy
Result

INTERVAL_YEAR_COL1

INTERVAL_YEAR_COL2

1-2

1000-11

Snowflake
SELECT * FROM
interval_year_to_month_table;
Copy
Result

INTERVAL_YEAR_COL1

INTERVAL_YEAR_COL2

1y, 2m

              |1000y, 11m        |
Copy

Known Issues

1. Only arithmetic operations are supported

Snowflake Intervals have several limitations. Only arithmetic operations between DATE or TIMESTAMP and Interval Constants are supported, every other scenario is not supported.

Related EWIs

TIMESTAMP Data Type

Description

The TIMESTAMP data type is an extension of the DATE data type. It stores the year, month, and day of the DATE data type, plus hour, minute, and second values. (Oracle SQL Language Reference Timestamp Data Type)

Both Oracle and Snowflake TIMESTAMP data types have the same precision range (0-9) but different default values. In Oracle, the default precision value is 6 and in Snowflake is 9.

However, there is a difference in behavior when an inserted value exceeds the set precision. Oracle rounds up the exceeding decimals, while Snowflake just trims the values.

TIMESTAMP [(fractional_seconds_precision)] 
Copy

Sample Source Patterns

Timestamp in Create Table

Oracle
CREATE TABLE timestamp_table
(
	timestamp_col1 TIMESTAMP,
	timestamp_col2 TIMESTAMP(7)
);

INSERT INTO timestamp_table(timestamp_col1, timestamp_col2) VALUES (TIMESTAMP '2010-10-10 12:00:00', TIMESTAMP '2010-10-10 12:00:00');
Copy
Snowflake
CREATE OR REPLACE TABLE timestamp_table
	(
		timestamp_col1 TIMESTAMP(6),
		timestamp_col2 TIMESTAMP(7)
	)
	COMMENT = '{"origin":"sf_sc","name":"snowconvert","version":{"major":1, "minor":0},{"attributes":{"component":"oracle"}}'
	;

	INSERT INTO timestamp_table(timestamp_col1, timestamp_col2) VALUES (TIMESTAMP '2010-10-10 12:00:00', TIMESTAMP '2010-10-10 12:00:00');
Copy

Retrieving data from a Timestamp column

Oracle
SELECT * FROM timestamp_table;
Copy
Result

TIMESTAMP_COL1

TIMESTAMP_COL2

2010-10-10 12:00:00.000

2010-10-10 12:00:00.000

Snowflake
SELECT * FROM
timestamp_table;
Copy
Result

TIMESTAMP_COL1

TIMESTAMP_COL2

2010-10-10 12:00:00.000

2010-10-10 12:00:00.000

Known Issues

No issues were found.

Related EWIs

No related EWIs.

TIMESTAMP WITH LOCAL TIME ZONE Data Type

Description

It differs from TIMESTAMP WITH TIME ZONE in that data stored in the database is normalized to the database time zone, and the time zone information is not stored as part of the column data..(Oracle SQL Language Reference Timestamp with Local Time Zone Data Type)

The Snowflake equivalent is TIMESTAMP_LTZ.

For more information, see also the TIMESTAMP section.

TIMESTAMP [(fractional_seconds_precision)] WITH LOCAL TIME ZONE

Copy

Sample Source Patterns

Timestamp with Time Zone in Create Table

Oracle
CREATE TABLE timestamp_with_local_time_zone_table
(
	timestamp_col1 TIMESTAMP(5) WITH LOCAL TIME ZONE
);

INSERT INTO timestamp_with_local_time_zone_table(timestamp_col1) VALUES (TIMESTAMP '2010-10-10 12:00:00');
INSERT INTO timestamp_with_local_time_zone_table(timestamp_col1) VALUES (TIMESTAMP '2010-10-10 12:00:00 -08:00');
Copy
Snowflake
CREATE OR REPLACE TABLE timestamp_with_local_time_zone_table
	(
		timestamp_col1 TIMESTAMP_LTZ(5)
	)
	COMMENT = '{"origin":"sf_sc","name":"snowconvert","version":{"major":1, "minor":0},{"attributes":{"component":"oracle"}}'
	;

	INSERT INTO timestamp_with_local_time_zone_table(timestamp_col1) VALUES (TIMESTAMP '2010-10-10 12:00:00');

	INSERT INTO timestamp_with_local_time_zone_table(timestamp_col1) VALUES (TIMESTAMP '2010-10-10 12:00:00 -08:00');
Copy

Retrieving data from a Timestamp with Local Time Zone column

Oracle
SELECT * FROM timestamp_with_local_time_zone_table;
Copy
Result

TIMESTAMP_COL1

2010-10-10 18:00:00.000

2010-10-10 20:00:00.000

Snowflake
SELECT * FROM
timestamp_with_local_time_zone_table;
Copy
Result

TIMESTAMP_COL1

2010-10-10 12:00:00.000 -0700

2010-10-10 12:00:00.000 -0700

Note

Note that the results are different in both engines because each database is set with a different time zone. The Oracle timezone is ‘+00:00’ and the Snowflake timezone is ‘America/Los_Angeles’.

Use the following syntax to change the default timezone of the database:

ALTER account SET timezone = timezone_string;
Copy

Known Issues

1. Default database timezone

The operations with this kind of data type will be affected by the database timezone, the results may be different. You can check the default timezone using the following queries:

Oracle
SELECT dbtimezone FROM dual;
Copy
Snowflake
SELECT dbtimezone FROM dual;
Copy
2. Oracle Timestamp with local timezone behavior

When operating timestamps with local timezone data types, Oracle converts the timestamps to the default timezone of the database. In order to emulate this behavior in Snowflake, the TIMESTAMP_TYPE_MAPPING session parameter should be set to ‘TIMESTAMP_LTZ’.

ALTER SESSION SET TIMESTAMP_TYPE_MAPPING = 'TIMESTAMP_LTZ';
Copy
3. Timestamp formats may be different

Snow Convert does not perform any conversion for the date/timestamps format strings, so there may be errors when deploying the code. Example:

Oracle
INSERT INTO timestamp_with_local_time_zone_table (timestamp_col1) VALUES (TIMESTAMP '2010-10-10 12:00:00 -8:00');
Copy
Snowflake
INSERT INTO timestamp_with_local_time_zone_table(timestamp_col1) VALUES (TIMESTAMP '2010-10-10 12:00:00 -8:00');
Copy

Warning

The query will fail in Snowflake because the default timestamp input format does not recognize ‘-8:00’ as a valid UTC offset. It should be replaced with ‘0800’ or ‘-08:00’ in order to get the same result.

Related EWIs

No related EWIs.

TIMESTAMP WITH TIME ZONE Data Type

Description

TIMESTAMP WITH TIME ZONE is a variant of TIMESTAMP that includes a time zone region name or a time zone offset in its value. The Snowflake equivalent is TIMESTAMP_TZ.(Oracle SQL Language Reference Timestamp with Time Zone Data Type)

The Snowflake equivalent is TIMESTAMP_TZ.

For more information, see also the TIMESTAMP section.

TIMESTAMP [(fractional_seconds_precision)] WITH TIME ZONE

Copy

Sample Source Patterns

Timestamp with Time Zone in Create Table

Oracle
CREATE TABLE timestamp_with_time_zone_table
(
	timestamp_col1 TIMESTAMP(5) WITH TIME ZONE
);


INSERT INTO timestamp_with_time_zone_table(timestamp_col1) VALUES (TIMESTAMP '2010-10-10 12:00:00');
Copy
Snowflake
CREATE OR REPLACE TABLE timestamp_with_time_zone_table
	(
		timestamp_col1 TIMESTAMP_TZ(5)
	)
	COMMENT = '{"origin":"sf_sc","name":"snowconvert","version":{"major":1, "minor":0},{"attributes":{"component":"oracle"}}'
	;

	INSERT INTO timestamp_with_time_zone_table(timestamp_col1) VALUES (TIMESTAMP '2010-10-10 12:00:00');
Copy

Retrieving data from a Timestamp with Time Zone column

Oracle
SELECT * FROM timestamp_with_time_zone_table;
Copy
Result

TIMESTAMP_COL1

2010-10-10 12:00:00.000 -0600

Snowflake
SELECT * FROM
timestamp_with_time_zone_table;
Copy
Result

TIMESTAMP_COL1

2010-10-10 12:00:00.000 -0700

Note

Note that the timezone is different in both engines because when the timezone is not specified, the default timezone of the database is added.

Use the following syntax to change the default timezone of the database:

ALTER account SET sqtimezone = timezone_string;
Copy

Known Issues

1. Timestamp formats may be different

Snow Convert does not perform any conversion for the date/timestamps format strings, so there may be errors when deploying the code. Example:

Oracle
INSERT INTO timestamp_with_time_zone_table(timestamp_col1) VALUES (TIMESTAMP '2010-10-10 12:00:00 -8:00');
Copy
Snowflake
INSERT INTO timestamp_with_time_zone_table(timestamp_col1) VALUES (TIMESTAMP '2010-10-10 12:00:00 -8:00');
Copy

Warning

The query will fail in Snowflake because the default timestamp input format does not recognize ‘-8:00’ as a valid UTC offset. It should be replaced with ‘-0800’ or ‘-08:00’ in order to get the same result.

Related EWIs

No related EWIs.

Datetime Arithmetic

This content explains the current transformation for some arithmetic operations between datetime types.

Description

In Oracle, some arithmetic operations could be performed between DateTime types, like addition, subtraction, multiplication, and division. Currently, SnowConvert AI can resolve some cases of addition and subtraction. These cases are explained below.

Sample Source Patterns

This is a summary of the current transformation for the different combinations of the addition and subtraction operations with date, timestamps, number, and unknown types.

Note

Consider the next table for the examples below.

Oracle

CREATE OR REPLACE TABLE TIMES (
AsTimeStamp TIMESTAMP(6),
AsTimestampTwo TIMESTAMP(6),
AsDate TIMESTAMP,
AsDateTwo TIMESTAMP
);

INSERT INTO TIMES
VALUES (
TO_TIMESTAMP('05/11/21, 11:00 A.M.', 'dd/mm/yy, hh:mi A.M.'),
TO_TIMESTAMP('05/11/21, 10:00 A.M.', 'dd/mm/yy, hh:mi A.M.'),
TO_DATE('06/11/21', 'dd/mm/yy'),
TO_DATE('05/11/21', 'dd/mm/yy'));
Copy
Snowflake
CREATE OR REPLACE TABLE TIMES (
 AsTimeStamp TIMESTAMP(6),
 AsTimestampTwo TIMESTAMP(6),
 AsDate TIMESTAMP(6),
 AsDateTwo TIMESTAMP(6)
 )
 COMMENT = '{"origin":"sf_sc","name":"snowconvert","version":{"major":1, "minor":0},{"attributes":{"component":"oracle"}}'
 ;

 INSERT INTO TIMES
 VALUES (
TO_TIMESTAMP('05/11/21, 11:00 A.M.', 'dd/mm/yy, hh:mi A.M.'),
TO_TIMESTAMP('05/11/21, 10:00 A.M.', 'dd/mm/yy, hh:mi A.M.'),
TO_DATE('06/11/21', 'dd/mm/yy'),
TO_DATE('05/11/21', 'dd/mm/yy'));
Copy

Addition

Combination Matrix

This is a summary of how the migrator resolves the addition operations for the different combinations with date, timestamps, number, and unknown types.

Addition

Date

Timestamp

Number

Interval

Unknown

Float

Date

INVALID

INVALID

Date + Interval day

Date + Interval IntervalUnit

DATEADD_UDF

DATEADD_UDF

Timestamp

INVALID

INVALID

Timestamp + Interval day

Timestamp + Interval IntervalUnit

DATEADD_UDF

DATEADD_UDF

Number

Date + Interval day

Timestamp + Interval day

Number + Number

INVALID

SSC-EWI-OR0036

Number + Float

Interval

Date + Interval IntervalUnit

Timestamp + Interval IntervalUnit

INVALID

SSC-EWI-OR0036

Unknown + Interval IntervalUnit

INVALID

Unknown

DATEADD_UDF

DATEADD_UDF

Unknown + Number

Unknown + Interval IntervalUnit

SSC-EWI-OR0036

SSC-EWI-OR0036

Float

DATEADD_UDF

DATEADD_UDF

Float + Number

INVALID

SSC-EWI-OR0036

Float + Float

Note

An Unknown Type column is the result of the migrator being unable to establish the data type that the column contains. This can happen for many reasons, for example missing DDLs for the tables being operated on, columns resulting from operations on views, CTES or subqueries, etc.

Warning

By default, Snow Convert migrates operations of type Date/Timestamp + Interval to the native Snowflake operations, but in some cases may be useful to use UDF instead. Further details about this UDF can be found here.

The different paths that the migrator can use for resolving the add operations will be explained below:

Invalid

Certain combinations are not valid to perform addition operations in Oracle:

Oracle
SELECT AsDate + AsDateTwo From TIMES;

SELECT AsDate + AsTimeStamp From TIMES;
Copy
Result
SQL Error [975] [42000]: ORA-00975: date + date not allowed

SQL Error [30087] [99999]: ORA-30087: Adding two datetime values is not allowed

Copy

Date + Interval day

This is the current transformation for the addition operation between a date type and a number (and vice versa). For example

Oracle
SELECT AsDate + 1 FROM TIMES;

SELECT 1 + AsDate FROM TIMES;
Copy
Result

ASDATE+1

2021-11-07 00:00:00.000

1+ASDATE

2021-11-07 00:00:00.000

Snowflake
SELECT
!!!RESOLVE EWI!!! /*** SSC-EWI-OR0036 - TYPES RESOLUTION ISSUES, ARITHMETIC OPERATION '+' MAY NOT BEHAVE CORRECTLY BETWEEN unknown AND Number ***/!!!
 AsDate + 1 FROM
 TIMES;


SELECT
 !!!RESOLVE EWI!!! /*** SSC-EWI-OR0036 - TYPES RESOLUTION ISSUES, ARITHMETIC OPERATION '+' MAY NOT BEHAVE CORRECTLY BETWEEN Number AND unknown ***/!!! 1 + AsDate FROM
 TIMES;
Copy
Result

ASDATE + INTERVAL ‘1 DAY’

2021-11-07

Timestamp + Interval day

This is the current transformation for the addition operation between a timestamp type and a number (and vice versa). For example

Oracle
SELECT AsTimestamp + 1 FROM TIMES;

SELECT 1 + AsTimestamp FROM TIMES;
Copy
Result

ASTIMESTAMP+1

2021-11-06 11:00:00.000

1+ASTIMESTAMP

2021-11-06 11:00:00.000

Note

Note: In Oracle, both DATE and TIMESTAMP columns contain a time component, but Oracle has used the format mask specified by the NLS_DATE_FORMAT parameter to decide how to implicitly convert the date to a string, that is why when performing some operations between TIMESTAMP and Intervals, he result could be shown as DATE, hiding the time component, unless the NLS_DATE_FORMAT parameter is changed.

Snowflake
SELECT
!!!RESOLVE EWI!!! /*** SSC-EWI-OR0036 - TYPES RESOLUTION ISSUES, ARITHMETIC OPERATION '+' MAY NOT BEHAVE CORRECTLY BETWEEN unknown AND Number ***/!!!
 AsTimestamp + 1 FROM
 TIMES;


SELECT
 !!!RESOLVE EWI!!! /*** SSC-EWI-OR0036 - TYPES RESOLUTION ISSUES, ARITHMETIC OPERATION '+' MAY NOT BEHAVE CORRECTLY BETWEEN Number AND unknown ***/!!! 1 + AsTimestamp FROM
 TIMES;
Copy
Result

ASTIMESTAMP + INTERVAL ‘1 DAY’

2021-11-06 11:00:00.000

DATEADD_UDF

For those cases where there is an addition operation between a date or timestamp type and an unknown type, a user-defined function (UDF) is added. The current UDF implementation can be found here. The UDF is located in the UDFs folder. For example:

Note

For the following examples, a subquery will be used, trying to simulate the Unknown Type column

Oracle
SELECT AsDate + (SELECT EXTRACT(DAY FROM AsTimestampTwo) FROM TIMES) FROM TIMES;

SELECT AsTimestamp + (SELECT EXTRACT(DAY FROM AsTimestampTwo) FROM TIMES) FROM TIMES;
Copy
Result

ASDATE+(SELECTEXTRACT(DAYFROMASTIMESTAMPTWO)FROMTIMES)

2021-11-11 00:00:00.000

ASTIMESTAMP+(SELECTEXTRACT(DAYFROMASTIMESTAMPTWO)FROMTIMES)

2021-11-10 11:00:00.000

Snowflake
SELECT AsDate + (SELECT EXTRACT(DAY FROM AsTimestampTwo) FROM
TIMES
) FROM
TIMES;

SELECT AsTimestamp + (SELECT EXTRACT(DAY FROM AsTimestampTwo) FROM
TIMES
) FROM
TIMES;
Copy
Result

PUBLIC.DATEADD_UDF( ASDATE, (SELECT EXTRACT(DAY FROM ASTIMESTAMPTWO) FROM PUBLIC.TIMES))

2021-11-11

PUBLIC.DATEADD_UDF( ASTIMESTAMP, (SELECT EXTRACT(DAY FROM ASTIMESTAMPTWO) FROM PUBLIC.TIMES))

2021-11-10 11:00:00.000

Subtraction

Combination Matrix

Subtraction

Date

Timestamp

Number

Interval

Unknown

Float

Date

DATEDIFF

TIMESTAMP_DIFF___UDF

Date - Interval day

Date - Interval IntervalUnit

DATEDIFF_UDF

DATEDIFF_UDF

Timestamp

TIMESTAMP_DIFF___UDF

TIMESTAMP_DIFF___UDF

Timestamp - Interval day

Timestamp - Interval IntervalUnit

DATEDIFF_UDF

DATEDIFF_UDF

Number

INVALID

INVALID

Number - Number

INVALID

SSC-EWI-OR0036

Number - Float

Interval

INVALID

INVALID

INVALID

SSC-EWI-OR0036

Unknown - Interval IntervalUnit

NOT SUPPORTED IN ORACLE

Unknown

DATEDIFF_UDF

DATEDIFF_UDF

SSC-EWI-OR0036

Unknown - Interval IntervalUnit

SSC-EWI-OR0036

SSC-EWI-OR0036

Float

DATEDIFF_UDF

DATEDIFF_UDF

Float - Number

NOT SUPPORTED IN ORACLE

SSC-EWI-OR0036

Float - Float

Note

An Unknown Type column is the result of the migrator being unable to establish the data type that the column contains. This can happen for many reasons, for example missing DDLs for the tables being operated on, columns resulting from operations on views, CTES or subqueries, etc.

Warning

By default, Snow Convert migrates operations of type Date/Timestamp + Interval to the native Snowflake operations, but in some cases may be useful to use UDF instead. Further details about this UDF can be found here.

The different paths that the migrator can use for resolving the subtract operations will be explained below:

Invalid

Certain combinations are not valid to perform subtraction operations in Oracle:

Oracle
SELECT 1 - AsDate FROM TIMES;

SELECT 1 - AsTimestamp FROM TIMES;
Copy
Result
SQL Error [932] [42000]: ORA-00932: inconsistent datatypes: expected NUMBER got DATE

SQL Error [932] [42000]: ORA-00932: inconsistent datatypes: expected NUMBER got TIMESTAMP

Copy

DATEDIFF

The subtraction between two operands of date type is converted to the Snowflake DATEDIFF function, using as a time unit (first parameter) ‘day’. For example

Oracle
SELECT AsDate - AsDateTwo FROM TIMES;
Copy
Result

ASDATE-ASDATETWO

1

Snowflake
SELECT AsDate - AsDateTwo FROM
TIMES;
Copy
Result

DATEDIFF(DAY, ASDATETWO, ASDATE)

1

Date - Interval day

This is the current transformation for the subtraction operation between a date type and a number. For example

Oracle
SELECT AsDate - 1 FROM TIMES;

SELECT AsDate + -1 FROM TIMES;
Copy
Result

ASDATE-1

2021-11-05 00:00:00.000

ASDATE+-1

2021-11-05 00:00:00.000

Snowflake
SELECT
!!!RESOLVE EWI!!! /*** SSC-EWI-OR0036 - TYPES RESOLUTION ISSUES, ARITHMETIC OPERATION '-' MAY NOT BEHAVE CORRECTLY BETWEEN unknown AND Number ***/!!!
 AsDate - 1 FROM
 TIMES;

SELECT
 !!!RESOLVE EWI!!! /*** SSC-EWI-OR0036 - TYPES RESOLUTION ISSUES, ARITHMETIC OPERATION '+' MAY NOT BEHAVE CORRECTLY BETWEEN unknown AND Number ***/!!! AsDate + -1 FROM
 TIMES;
Copy
Result

ASDATE - INTERVAL ‘1 DAY’

2021-11-05

ASDATE + INTERVAL ‘-1 DAY’

2021-11-05

Timestamp - Interval day

This is the current transformation for the addition operation between a timestamp type and a number. For example

Oracle
SELECT AsTimestamp - 1 FROM TIMES;

SELECT AsTimestamp + -1 FROM TIMES;
Copy
Result

ASTIMESTAMP-1

2021-11-04 11:00:00.000

ASTIMESTAMP+-1

2021-11-04 11:00:00.000

Snowflake
SELECT
!!!RESOLVE EWI!!! /*** SSC-EWI-OR0036 - TYPES RESOLUTION ISSUES, ARITHMETIC OPERATION '-' MAY NOT BEHAVE CORRECTLY BETWEEN unknown AND Number ***/!!!
 AsTimestamp - 1 FROM
 TIMES;

SELECT
 !!!RESOLVE EWI!!! /*** SSC-EWI-OR0036 - TYPES RESOLUTION ISSUES, ARITHMETIC OPERATION '+' MAY NOT BEHAVE CORRECTLY BETWEEN unknown AND Number ***/!!! AsTimestamp + -1 FROM
 TIMES;
Copy
Result

ASTIMESTAMP - INTERVAL ‘1 DAY’

2021-11-04 11:00:00.000

ASTIMESTAMP + INTERVAL ‘-1 DAY’

2021-11-04 11:00:00.000

Note

Note: In Oracle, both DATE and TIMESTAMP columns contain a time component, but Oracle uses the format mask specified by the NLS_DATE_FORMAT parameter to decide how to implicitly convert the date to a string, that is why when performing some operations between the TIMESTAMP and Intervals, the result could be shown as DATE, hiding the time component, unless the NLS_DATE_FORMAT parameter is changed.

More information about the NLS_DATE_FORMAT format can be found here.

TIMESTAMP_DIFF_UDF

The subtractions between timestamp types and dates with a timestamp and vice versa; are resolved by inserting the TIMESTAMP_DIFF_UDF user-defined function, (implementation here). For example

Oracle
SELECT AsTimeStamp - AsTimeStampTwo FROM TIMES;

SELECT AsTimeStamp - AsDateTwo FROM TIMES;

SELECT AsDateTwo - AsTimeStamp FROM TIMES;
Copy
Result

ASTIMESTAMP-ASTIMESTAMPTWO

+000000000 01:00:00.000000

ASTIMESTAMP-ASDATETWO

+000000000 11:00:00.000000

ASDATETWO-ASTIMESTAMP

-000000000 11:00:00.000000

Snowflake
SELECT AsTimeStamp - AsTimeStampTwo FROM
TIMES;

SELECT AsTimeStamp - AsDateTwo FROM
TIMES;

SELECT AsDateTwo - AsTimeStamp FROM
TIMES;
Copy
Result

PUBLIC.TIMESTAMP_DIFF_UDF( ASTIMESTAMP, ASTIMESTAMPTWO)

+000000000 01:00:00.00000000

PUBLIC.TIMESTAMP_DIFF_UDF( ASTIMESTAMP, ASDATETWO)

+000000000 11:00:00.00000000

PUBLIC.TIMESTAMP_DIFF_UDF( ASDATETWO, ASTIMESTAMP)

-000000000 -11:00:00.00000000

DATEDIFF_UDF

For those cases where there is an addition operation between a date or timestamp type and an unknown type, a user-defined function (UDF) is added. The UDF implementation can be found here, but it could be edited to perform what is required. The UDF is located in the UDFs folder. For example:

Oracle
SELECT ASDATE - (EXTRACT(DAY FROM ASDATE)) FROM TIMES;

SELECT ASTIMESTAMP - (EXTRACT(DAY FROM ASDATE)) FROM TIMES;
Copy
Result

ASDATE-(EXTRACT(DAYFROMASDATE))

2021-10-31 00:00:00.000

ASTIMESTAMP-(EXTRACT(DAYFROMASDATE))

2021-10-30 11:00:00.000

Snowflake
SELECT ASDATE - (EXTRACT(DAY FROM ASDATE)) FROM
TIMES;


SELECT ASTIMESTAMP - (EXTRACT(DAY FROM ASDATE)) FROM
TIMES;
Copy
Result

PUBLIC.DATEDIFF_UDF( ASDATE, (EXTRACT(DAY FROM ASDATE)))

2021-10-31

PUBLIC.DATEDIFF_UDF( ASTIMESTAMP, (EXTRACT(DAY FROM ASDATE)))

2021-10-30 11:00:00.000

Common Cases

Warning: SSC-EWI-OR0036

This warning is used to indicate whether an addition or subtraction operation may not behave correctly due to the operands data types. It means that maybe the result of the operation in Snowflake is not functionally equivalent to Oracle. The addition and subtraction between a date or numeric type and an unknown type are one of the most common cases. For example

Oracle
SELECT AsDate - (EXTRACT(DAY FROM ASDATE)) FROM TIMES;
Copy
Snowflake
SELECT AsDate - (EXTRACT(DAY FROM ASDATE)) FROM
TIMES;
Copy

This EWI is added in operations where the type of a column could not be resolved, if the column type is INTERVAL and it is operated only with other intervals, EWI will be added but code will not be commented out. The following example describes this behavior:

Oracle
SELECT INTERVAL '1' DAY + interval_column FROM UNKNOWN_TABLE;
Copy
Snowflake
SELECT
!!!RESOLVE EWI!!! /*** SSC-EWI-OR0036 - TYPES RESOLUTION ISSUES, ARITHMETIC OPERATION '+' MAY NOT BEHAVE CORRECTLY BETWEEN Unknown AND Interval ***/!!!
interval_column + INTERVAL '1 day' FROM
UNKNOWN_TABLE;
Copy

Known Issues

1. TIMESTAMP DIFF UDF improvement

The TIMESTAMP_DIFF_UDF must be improved to be able to specify the return type. It means adding a third parameter where it is possible to specify the time part, for example, day, hour, month, etc.

2. Built-in functions as operators

There is currently no management for date operations between built-in functions that return date types.

3. Multiple operands

Currently, there is no management for date operation with more than two operands, it may work but you may also find issues.

4. Comparison operators

Currently, there is no management for date operations with comparison operators like greater than, lower than, etc.

5. Output format

The result’s format of the arithmetic operations could be changed by using the next command ALTER SESSION SET DATE_OUTPUT_FORMAT = 'DESIRED-FORMAT'; in Snowflake.

6. Issues in interval operations with seconds precision

Some operations may differ in precision, specifically those that include intervals with seconds precision, this is because Oracle rounds depending on the precision, Snowflake’s interval does not support seconds with decimal places, in order to have the same result, it is necessary to change the second decimal places by milliseconds in intervals considering the rounding that Oracle performs. The following example shows this issue

Oracle
SELECT AsTimeStamp+INTERVAL '15.6789' SECOND(2,3) FROM times;

SELECT AsTimeStamp+INTERVAL '15.6783' SECOND(2,3) FROM times;
Copy
Result

ASTIMESTAMP+INTERVAL’15.6789’SECOND(2,3)

2021-11-05 11:00:15.679

ASTIMESTAMP+INTERVAL’15.6783’SECOND(2,3)

2021-11-05 11:00:15.678

Snowflake
SELECT
!!!RESOLVE EWI!!! /*** SSC-EWI-OR0036 - TYPES RESOLUTION ISSUES, ARITHMETIC OPERATION '+' MAY NOT BEHAVE CORRECTLY BETWEEN Unknown AND Interval ***/!!!
 AsTimeStamp + INTERVAL '15.6789 second'
FROM
 times;

SELECT
 !!!RESOLVE EWI!!! /*** SSC-EWI-OR0036 - TYPES RESOLUTION ISSUES, ARITHMETIC OPERATION '+' MAY NOT BEHAVE CORRECTLY BETWEEN Unknown AND Interval ***/!!! AsTimeStamp + INTERVAL '15.6783 second'
FROM
 times;
Copy
Result

ASTIMESTAMP + INTERVAL ‘15.6789 SECOND’

2021-11-05 11:00:16.000

ASTIMESTAMP + INTERVAL ‘15.6783 SECOND’

2021-11-05 11:00:16.000

ASTIMESTAMP + INTERVAL ‘15 SECOND, 679 MILLISECOND’

2021-11-05 11:00:15.679

ASTIMESTAMP + INTERVAL ‘15 SECOND, 678 MILLISECOND’

2021-11-05 11:00:15.678

Related EWIs

  1. SSC-EWI-0108: The following subquery matches at least one of the patterns considered invalid and may produce compilation errors.

  2. SSC-EWI-OR0036: Types resolution issues, the arithmetic operation may not behave correctly between string and date.

Interval UDFs vs Snowflake native interval operation

Description

The following table shows a comparison between the DATEADD_UDF INTERVAL and DATEDIFF_UDF INTERVAL vs the Snowflake native operation for interval arithmetic.

Necessary Code

To run the queries of the comparative table it is necessary to run the following code:

CREATE OR REPLACE TABLE TIMES(
AsTimeStamp TIMESTAMP,
AsTimestampTwo TIMESTAMP,
AsDate DATE,
AsDateTwo DATE
);

INSERT INTO TIMES VALUES (
  TO_TIMESTAMP('05/11/21, 11:00 A.M.', 'dd/mm/yy, hh:mi A.M.'), 
  TO_TIMESTAMP('05/11/21, 10:00 A.M.', 'dd/mm/yy, hh:mi A.M.'), 
  TO_DATE('06/11/21', 'dd/mm/yy'), 
  TO_DATE('05/11/21', 'dd/mm/yy'));

CREATE TABLE UNKNOWN_TABLE(
  Unknown timestamp
);

INSERT INTO UNKNOWN_TABLE VALUES (
  TO_TIMESTAMP('01/10/09, 12:00 P.M.', 'dd/mm/yy, hh:mi P.M.')
);
Copy
CREATE OR REPLACE TABLE TIMES (
  AsTimeStamp TIMESTAMP(6),
  AsTimestampTwo TIMESTAMP(6),
  AsDate TIMESTAMP /*** SSC-FDM-OR0042 - DATE TYPE COLUMN HAS A DIFFERENT BEHAVIOR IN SNOWFLAKE. ***/,
  AsDateTwo TIMESTAMP /*** SSC-FDM-OR0042 - DATE TYPE COLUMN HAS A DIFFERENT BEHAVIOR IN SNOWFLAKE. ***/
  )
  COMMENT = '{"origin":"sf_sc","name":"snowconvert","version":{"major":1, "minor":0},"attributes":{"component":"oracle"}}'
  ;

  INSERT INTO TIMES
  VALUES (
  TO_TIMESTAMP('05/11/21, 11:00 A.M.', 'dd/mm/yy, hh:mi A.M.'),
  TO_TIMESTAMP('05/11/21, 10:00 A.M.', 'dd/mm/yy, hh:mi A.M.'),
  TO_DATE('06/11/21', 'dd/mm/yy'),
  TO_DATE('05/11/21', 'dd/mm/yy'));

  CREATE OR REPLACE TABLE UNKNOWN_TABLE (
  Unknown TIMESTAMP(6)
  )
  COMMENT = '{"origin":"sf_sc","name":"snowconvert","version":{"major":1, "minor":0},"attributes":{"component":"oracle"}}'
  ;

  INSERT INTO UNKNOWN_TABLE
  VALUES (
  TO_TIMESTAMP('01/10/09, 12:00 P.M.', 'dd/mm/yy, hh:mi P.M.')
);
Copy

Comparison Table

Oracle

SELECT AsTimeStamp+INTERVAL '1-1' YEAR(2) TO MONTH FROM TIMES;
SELECT AsTimeStamp-INTERVAL '1-1' YEAR(2) TO MONTH FROM TIMES;
SELECT AsTimeStamp+INTERVAL '2-1' YEAR(4) TO MONTH FROM TIMES;
SELECT AsTimeStamp-INTERVAL '2-1' YEAR(4) TO MONTH FROM TIMES;
SELECT AsTimeStamp+INTERVAL '1' MONTH FROM TIMES;
SELECT AsTimeStamp-INTERVAL '1' MONTH FROM TIMES;
SELECT AsTimeStamp+INTERVAL '2' MONTH FROM TIMES;
SELECT AsTimeStamp-INTERVAL '2' MONTH FROM TIMES;
SELECT AsTimeStamp+INTERVAL '1 01:00:00.222' DAY TO SECOND(3) FROM TIMES;
SELECT AsTimeStamp-INTERVAL '1 01:00:00.222' DAY TO SECOND(3) FROM TIMES;
SELECT AsTimeStamp+INTERVAL '1 01:10' DAY TO MINUTE FROM TIMES;
SELECT AsTimeStamp-INTERVAL '1 01:10' DAY TO MINUTE FROM TIMES;
SELECT AsTimeStamp+INTERVAL '1 1' DAY TO HOUR FROM TIMES;
SELECT AsTimeStamp-INTERVAL '1 1' DAY TO HOUR FROM TIMES;
SELECT AsTimeStamp+INTERVAL '10' DAY FROM TIMES;
SELECT AsTimeStamp-INTERVAL '10' DAY FROM TIMES;
SELECT AsTimeStamp+INTERVAL '3:05' HOUR TO MINUTE FROM TIMES;
SELECT AsTimeStamp-INTERVAL '3:05' HOUR TO MINUTE FROM TIMES;
SELECT AsTimeStamp+INTERVAL '5' HOUR FROM TIMES;
SELECT AsTimeStamp-INTERVAL '5' HOUR FROM TIMES;
SELECT AsTimeStamp+INTERVAL '5:10' MINUTE TO SECOND FROM TIMES;
SELECT AsTimeStamp-INTERVAL '5:10' MINUTE TO SECOND FROM TIMES;
SELECT AsTimeStamp+INTERVAL '30' MINUTE FROM TIMES;
SELECT AsTimeStamp-INTERVAL '30' MINUTE FROM TIMES;
SELECT AsTimeStamp+INTERVAL '333' HOUR(3) FROM TIMES;
SELECT AsTimeStamp-INTERVAL '333' HOUR(3) FROM TIMES;
SELECT AsTimeStamp+INTERVAL '15.6789' SECOND(2,3) FROM TIMES;
SELECT AsTimeStamp-INTERVAL '15.6789' SECOND(2,3) FROM TIMES;
SELECT AsDate+INTERVAL '1-1' YEAR(2) TO MONTH FROM TIMES;
SELECT AsDate-INTERVAL '1-1' YEAR(2) TO MONTH FROM TIMES;
SELECT AsDate+INTERVAL '2-1' YEAR(4) TO MONTH FROM TIMES;
SELECT AsDate-INTERVAL '2-1' YEAR(4) TO MONTH FROM TIMES;
SELECT AsDate+INTERVAL '1' MONTH FROM TIMES;
SELECT AsDate-INTERVAL '1' MONTH FROM TIMES;
SELECT AsDate+INTERVAL '2' MONTH FROM TIMES;
SELECT AsDate-INTERVAL '2' MONTH FROM TIMES;
SELECT AsDate+INTERVAL '1 01:00:00.222' DAY TO SECOND(3) FROM TIMES;
SELECT AsDate-INTERVAL '1 01:00:00.222' DAY TO SECOND(3) FROM TIMES;
SELECT AsDate+INTERVAL '1 01:10' DAY TO MINUTE FROM TIMES;
SELECT AsDate-INTERVAL '1 01:10' DAY TO MINUTE FROM TIMES;
SELECT AsDate+INTERVAL '1 1' DAY TO HOUR FROM TIMES;
SELECT AsDate-INTERVAL '1 1' DAY TO HOUR FROM TIMES;
SELECT AsDate+INTERVAL '10' DAY FROM TIMES;
SELECT AsDate-INTERVAL '10' DAY FROM TIMES;
SELECT AsDate+INTERVAL '3:05' HOUR TO MINUTE FROM TIMES;
SELECT AsDate-INTERVAL '3:05' HOUR TO MINUTE FROM TIMES;
SELECT AsDate+INTERVAL '5' HOUR FROM TIMES;
SELECT AsDate-INTERVAL '5' HOUR FROM TIMES;
SELECT AsDate+INTERVAL '5:10' MINUTE TO SECOND FROM TIMES;
SELECT AsDate-INTERVAL '5:10' MINUTE TO SECOND FROM TIMES;
SELECT AsDate+INTERVAL '30' MINUTE FROM TIMES;
SELECT AsDate-INTERVAL '30' MINUTE FROM TIMES;
SELECT AsDate+INTERVAL '333' HOUR(3) FROM TIMES;
SELECT AsDate-INTERVAL '333' HOUR(3) FROM TIMES;
SELECT AsDate+INTERVAL '15.6789' SECOND(2,3) FROM TIMES;
SELECT AsDate-INTERVAL '15.6789' SECOND(2,3) FROM TIMES;
SELECT Unknown+INTERVAL '1-1' YEAR(2) TO MONTH FROM UNKNOWN_TABLE;
SELECT Unknown-INTERVAL '1-1' YEAR(2) TO MONTH FROM UNKNOWN_TABLE;
SELECT Unknown+INTERVAL '2-1' YEAR(4) TO MONTH FROM UNKNOWN_TABLE;
SELECT Unknown-INTERVAL '2-1' YEAR(4) TO MONTH FROM UNKNOWN_TABLE;
SELECT Unknown+INTERVAL '1' MONTH FROM UNKNOWN_TABLE;
SELECT Unknown-INTERVAL '1' MONTH FROM UNKNOWN_TABLE;
SELECT Unknown+INTERVAL '2' MONTH FROM UNKNOWN_TABLE;
SELECT Unknown-INTERVAL '2' MONTH FROM UNKNOWN_TABLE;
SELECT Unknown+INTERVAL '1 01:00:00.222' DAY TO SECOND(3) FROM UNKNOWN_TABLE;
SELECT Unknown-INTERVAL '1 01:00:00.222' DAY TO SECOND(3) FROM UNKNOWN_TABLE;
SELECT Unknown+INTERVAL '1 01:10' DAY TO MINUTE FROM UNKNOWN_TABLE;
SELECT Unknown-INTERVAL '1 01:10' DAY TO MINUTE FROM UNKNOWN_TABLE;
SELECT Unknown+INTERVAL '1 1' DAY TO HOUR FROM UNKNOWN_TABLE;
SELECT Unknown-INTERVAL '1 1' DAY TO HOUR FROM UNKNOWN_TABLE;
SELECT Unknown+INTERVAL '10' DAY FROM UNKNOWN_TABLE;
SELECT Unknown-INTERVAL '10' DAY FROM UNKNOWN_TABLE;
SELECT Unknown+INTERVAL '3:05' HOUR TO MINUTE FROM UNKNOWN_TABLE;
SELECT Unknown-INTERVAL '3:05' HOUR TO MINUTE FROM UNKNOWN_TABLE;
SELECT Unknown+INTERVAL '5' HOUR FROM UNKNOWN_TABLE;
SELECT Unknown-INTERVAL '5' HOUR FROM UNKNOWN_TABLE;
SELECT Unknown+INTERVAL '5:10' MINUTE TO SECOND FROM UNKNOWN_TABLE;
SELECT Unknown-INTERVAL '5:10' MINUTE TO SECOND FROM UNKNOWN_TABLE;
SELECT Unknown+INTERVAL '30' MINUTE FROM UNKNOWN_TABLE;
SELECT Unknown-INTERVAL '30' MINUTE FROM UNKNOWN_TABLE;
SELECT Unknown+INTERVAL '333' HOUR(3) FROM UNKNOWN_TABLE;
SELECT Unknown-INTERVAL '333' HOUR(3) FROM UNKNOWN_TABLE;
SELECT Unknown+INTERVAL '15.6789' SECOND(2,3) FROM UNKNOWN_TABLE;
SELECT Unknown-INTERVAL '15.6789' SECOND(2,3) FROM UNKNOWN_TABLE;
SELECT INTERVAL '1-1' YEAR(2) TO MONTH+ AsTimeStamp FROM TIMES;
SELECT INTERVAL '1-1' YEAR(2) TO MONTH+AsDate FROM TIMES;
SELECT INTERVAL '1-1' YEAR(2) TO MONTH+Unknown FROM UNKNOWN_TABLE;
SELECT INTERVAL '2-1' YEAR(4) TO MONTH+AsTimeStamp FROM TIMES;
SELECT INTERVAL '2-1' YEAR(4) TO MONTH+AsDate FROM TIMES;
SELECT INTERVAL '2-1' YEAR(4) TO MONTH+Unknown FROM UNKNOWN_TABLE;
SELECT INTERVAL '1' MONTH+AsTimeStamp FROM TIMES;
SELECT INTERVAL '1' MONTH+AsDate FROM TIMES;
SELECT INTERVAL '1' MONTH+Unknown FROM UNKNOWN_TABLE;
SELECT INTERVAL '2' MONTH+AsTimeStamp FROM TIMES;
SELECT INTERVAL '2' MONTH+AsDate FROM TIMES;
SELECT INTERVAL '2' MONTH+Unknown FROM UNKNOWN_TABLE;
SELECT INTERVAL '1 01:00:00.222' DAY TO SECOND(3)+AsTimeStamp FROM TIMES;
SELECT INTERVAL '1 01:00:00.222' DAY TO SECOND(3)+AsDate FROM TIMES;
SELECT INTERVAL '1 01:00:00.222' DAY TO SECOND(3)+Unknown FROM UNKNOWN_TABLE;
SELECT INTERVAL '1 01:10' DAY TO MINUTE+AsTimeStamp FROM TIMES;
SELECT INTERVAL '1 01:10' DAY TO MINUTE+AsDate FROM TIMES;
SELECT INTERVAL '1 01:10' DAY TO MINUTE+Unknown FROM UNKNOWN_TABLE;
SELECT INTERVAL '1 1' DAY TO HOUR+AsTimeStamp FROM TIMES;
SELECT INTERVAL '1 1' DAY TO HOUR+AsDate FROM TIMES;
SELECT INTERVAL '1 1' DAY TO HOUR+Unknown FROM UNKNOWN_TABLE;
SELECT INTERVAL '10' DAY+AsTimeStamp FROM TIMES;
SELECT INTERVAL '10' DAY+AsDate FROM TIMES;
SELECT INTERVAL '10' DAY+Unknown FROM UNKNOWN_TABLE;
SELECT INTERVAL '3:05' HOUR TO MINUTE+AsTimeStamp FROM TIMES;
SELECT INTERVAL '3:05' HOUR TO MINUTE+AsDate FROM TIMES;
SELECT INTERVAL '3:05' HOUR TO MINUTE+Unknown FROM UNKNOWN_TABLE;
SELECT INTERVAL '5' HOUR+AsTimeStamp FROM TIMES;
SELECT INTERVAL '5' HOUR+AsDate FROM TIMES;
SELECT INTERVAL '5' HOUR+Unknown FROM UNKNOWN_TABLE;
SELECT INTERVAL '5:10' MINUTE TO SECOND+AsTimeStamp FROM TIMES;
SELECT INTERVAL '5:10' MINUTE TO SECOND+AsDate FROM TIMES;
SELECT INTERVAL '5:10' MINUTE TO SECOND+Unknown FROM UNKNOWN_TABLE;
SELECT INTERVAL '30' MINUTE+AsTimeStamp FROM TIMES;
SELECT INTERVAL '30' MINUTE+AsDate FROM TIMES;
SELECT INTERVAL '30' MINUTE+Unknown FROM UNKNOWN_TABLE;
SELECT INTERVAL '333' HOUR(3)+AsTimeStamp FROM TIMES;
SELECT INTERVAL '333' HOUR(3)+AsDate FROM TIMES;
SELECT INTERVAL '333' HOUR(3)+Unknown FROM UNKNOWN_TABLE;
SELECT INTERVAL '15.6789' SECOND(2,3)+AsTimeStamp FROM TIMES;
SELECT INTERVAL '15.6789' SECOND(2,3)+AsDate FROM TIMES;
SELECT INTERVAL '15.6789' SECOND(2,3)+Unknown FROM UNKNOWN_TABLE;
Copy

Snowflake

SELECT AsTimeStamp + INTERVAL '1y, 1mm' FROM PUBLIC.TIMES;
SELECT AsTimeStamp - INTERVAL '1y, 1mm' FROM PUBLIC.TIMES;
SELECT AsTimeStamp + INTERVAL '2y, 1mm' FROM PUBLIC.TIMES;
SELECT AsTimeStamp - INTERVAL '2y, 1mm' FROM PUBLIC.TIMES;
SELECT AsTimeStamp + INTERVAL '1 month' FROM PUBLIC.TIMES;
SELECT AsTimeStamp - INTERVAL '1 month' FROM PUBLIC.TIMES;
SELECT AsTimeStamp + INTERVAL '2 month' FROM PUBLIC.TIMES;
SELECT AsTimeStamp - INTERVAL '2 month' FROM PUBLIC.TIMES;
SELECT AsTimeStamp + INTERVAL '1d, 01h, 00m, 00s, 222ms' FROM PUBLIC.TIMES;
SELECT AsTimeStamp - INTERVAL '1d, 01h, 00m, 00s, 222ms' FROM PUBLIC.TIMES;
SELECT AsTimeStamp + INTERVAL '1d, 01h, 10m' FROM PUBLIC.TIMES;
SELECT AsTimeStamp - INTERVAL '1d, 01h, 10m' FROM PUBLIC.TIMES;
SELECT AsTimeStamp + INTERVAL '1d, 1h' FROM PUBLIC.TIMES;
SELECT AsTimeStamp - INTERVAL '1d, 1h' FROM PUBLIC.TIMES;
SELECT AsTimeStamp + INTERVAL '10 day' FROM PUBLIC.TIMES;
SELECT AsTimeStamp - INTERVAL '10 day' FROM PUBLIC.TIMES;
SELECT AsTimeStamp + INTERVAL '3h, 05m' FROM PUBLIC.TIMES;
SELECT AsTimeStamp - INTERVAL '3h, 05m' FROM PUBLIC.TIMES;
SELECT AsTimeStamp + INTERVAL '5 hour' FROM PUBLIC.TIMES;
SELECT AsTimeStamp - INTERVAL '5 hour' FROM PUBLIC.TIMES;
SELECT AsTimeStamp + INTERVAL '5m, 10s' FROM PUBLIC.TIMES;
SELECT AsTimeStamp - INTERVAL '5m, 10s' FROM PUBLIC.TIMES;
SELECT AsTimeStamp + INTERVAL '30 minute' FROM PUBLIC.TIMES;
SELECT AsTimeStamp - INTERVAL '30 minute' FROM PUBLIC.TIMES;
SELECT AsTimeStamp + INTERVAL '333 hour' FROM PUBLIC.TIMES;
SELECT AsTimeStamp - INTERVAL '333 hour' FROM PUBLIC.TIMES;
SELECT AsTimeStamp + INTERVAL '15.6789 second' FROM PUBLIC.TIMES;
SELECT AsTimeStamp - INTERVAL '15.6789 second' FROM PUBLIC.TIMES;
SELECT AsDate + INTERVAL '1y, 1mm' FROM PUBLIC.TIMES;
SELECT AsDate - INTERVAL '1y, 1mm' FROM PUBLIC.TIMES;
SELECT AsDate + INTERVAL '2y, 1mm' FROM PUBLIC.TIMES;
SELECT AsDate - INTERVAL '2y, 1mm' FROM PUBLIC.TIMES;
SELECT AsDate + INTERVAL '1 month' FROM PUBLIC.TIMES;
SELECT AsDate - INTERVAL '1 month' FROM PUBLIC.TIMES;
SELECT AsDate + INTERVAL '2 month' FROM PUBLIC.TIMES;
SELECT AsDate - INTERVAL '2 month' FROM PUBLIC.TIMES;
SELECT AsDate + INTERVAL '1d, 01h, 00m, 00s, 222ms' FROM PUBLIC.TIMES;
SELECT AsDate - INTERVAL '1d, 01h, 00m, 00s, 222ms' FROM PUBLIC.TIMES;
SELECT AsDate + INTERVAL '1d, 01h, 10m' FROM PUBLIC.TIMES;
SELECT AsDate - INTERVAL '1d, 01h, 10m' FROM PUBLIC.TIMES;
SELECT AsDate + INTERVAL '1d, 1h' FROM PUBLIC.TIMES;
SELECT AsDate - INTERVAL '1d, 1h' FROM PUBLIC.TIMES;
SELECT AsDate + INTERVAL '10 day' FROM PUBLIC.TIMES;
SELECT AsDate - INTERVAL '10 day' FROM PUBLIC.TIMES;
SELECT AsDate + INTERVAL '3h, 05m' FROM PUBLIC.TIMES;
SELECT AsDate - INTERVAL '3h, 05m' FROM PUBLIC.TIMES;
SELECT AsDate + INTERVAL '5 hour' FROM PUBLIC.TIMES;
SELECT AsDate - INTERVAL '5 hour' FROM PUBLIC.TIMES;
SELECT AsDate + INTERVAL '5m, 10s' FROM PUBLIC.TIMES;
SELECT AsDate - INTERVAL '5m, 10s' FROM PUBLIC.TIMES;
SELECT AsDate + INTERVAL '30 minute' FROM PUBLIC.TIMES;
SELECT AsDate - INTERVAL '30 minute' FROM PUBLIC.TIMES;
SELECT AsDate + INTERVAL '333 hour' FROM PUBLIC.TIMES;
SELECT AsDate - INTERVAL '333 hour' FROM PUBLIC.TIMES;
SELECT AsDate + INTERVAL '15.6789 second' FROM PUBLIC.TIMES;
SELECT AsDate - INTERVAL '15.6789 second' FROM PUBLIC.TIMES;
SELECT Unknown + INTERVAL '1y, 1mm' FROM PUBLIC.UNKNOWN_TABLE;
SELECT Unknown - INTERVAL '1y, 1mm' FROM PUBLIC.UNKNOWN_TABLE;
SELECT Unknown + INTERVAL '2y, 1mm' FROM PUBLIC.UNKNOWN_TABLE;
SELECT Unknown - INTERVAL '2y, 1mm' FROM PUBLIC.UNKNOWN_TABLE;
SELECT Unknown + INTERVAL '1 month' FROM PUBLIC.UNKNOWN_TABLE;
SELECT Unknown - INTERVAL '1 month' FROM PUBLIC.UNKNOWN_TABLE;
SELECT Unknown + INTERVAL '2 month' FROM PUBLIC.UNKNOWN_TABLE;
SELECT Unknown - INTERVAL '2 month' FROM PUBLIC.UNKNOWN_TABLE;
SELECT Unknown + INTERVAL '1d, 01h, 00m, 00s, 222ms' FROM PUBLIC.UNKNOWN_TABLE;
SELECT Unknown - INTERVAL '1d, 01h, 00m, 00s, 222ms' FROM PUBLIC.UNKNOWN_TABLE;
SELECT Unknown + INTERVAL '1d, 01h, 10m' FROM PUBLIC.UNKNOWN_TABLE;
SELECT Unknown - INTERVAL '1d, 01h, 10m' FROM PUBLIC.UNKNOWN_TABLE;
SELECT Unknown + INTERVAL '1d, 1h' FROM PUBLIC.UNKNOWN_TABLE;
SELECT Unknown - INTERVAL '1d, 1h' FROM PUBLIC.UNKNOWN_TABLE;
SELECT Unknown + INTERVAL '10 day' FROM PUBLIC.UNKNOWN_TABLE;
SELECT Unknown - INTERVAL '10 day' FROM PUBLIC.UNKNOWN_TABLE;
SELECT Unknown + INTERVAL '3h, 05m' FROM PUBLIC.UNKNOWN_TABLE;
SELECT Unknown - INTERVAL '3h, 05m' FROM PUBLIC.UNKNOWN_TABLE;
SELECT Unknown + INTERVAL '5 hour' FROM PUBLIC.UNKNOWN_TABLE;
SELECT Unknown - INTERVAL '5 hour' FROM PUBLIC.UNKNOWN_TABLE;
SELECT Unknown + INTERVAL '5m, 10s' FROM PUBLIC.UNKNOWN_TABLE;
SELECT Unknown - INTERVAL '5m, 10s' FROM PUBLIC.UNKNOWN_TABLE;
SELECT Unknown + INTERVAL '30 minute' FROM PUBLIC.UNKNOWN_TABLE;
SELECT Unknown - INTERVAL '30 minute' FROM PUBLIC.UNKNOWN_TABLE;
SELECT Unknown + INTERVAL '333 hour' FROM PUBLIC.UNKNOWN_TABLE;
SELECT Unknown - INTERVAL '333 hour' FROM PUBLIC.UNKNOWN_TABLE;
SELECT Unknown + INTERVAL '15.6789 second' FROM PUBLIC.UNKNOWN_TABLE;
SELECT Unknown - INTERVAL '15.6789 second' FROM PUBLIC.UNKNOWN_TABLE;
Copy

Snowflake UDF

SELECT DATEADD_UDF(AsTimeStamp,'INTERVAL ''1-1'' YEAR(2) TO MONTH') FROM PUBLIC.TIMES;
SELECT DATEDIFF_UDF(AsTimeStamp,'INTERVAL ''1-1'' YEAR(2) TO MONTH') FROM PUBLIC.TIMES;
SELECT DATEADD_UDF(AsTimeStamp,'INTERVAL ''2-1'' YEAR(4) TO MONTH') FROM PUBLIC.TIMES;
SELECT DATEDIFF_UDF(AsTimeStamp,'INTERVAL ''2-1'' YEAR(4) TO MONTH') FROM PUBLIC.TIMES;
SELECT DATEADD_UDF(AsTimeStamp,'INTERVAL ''1'' MONTH') FROM PUBLIC.TIMES;
SELECT DATEDIFF_UDF(AsTimeStamp,'INTERVAL ''1'' MONTH') FROM PUBLIC.TIMES;
SELECT DATEADD_UDF(AsTimeStamp,'INTERVAL ''2'' MONTH') FROM PUBLIC.TIMES;
SELECT DATEDIFF_UDF(AsTimeStamp,'INTERVAL ''2'' MONTH') FROM PUBLIC.TIMES;
SELECT DATEADD_UDF(AsTimeStamp,'INTERVAL ''1 01:00:00.222'' DAY TO SECOND(3)') FROM PUBLIC.TIMES;
SELECT DATEDIFF_UDF(AsTimeStamp,'INTERVAL ''1 01:00:00.222'' DAY TO SECOND(3)') FROM PUBLIC.TIMES;
SELECT DATEADD_UDF(AsTimeStamp,'INTERVAL ''1 01:10'' DAY TO MINUTE') FROM PUBLIC.TIMES;
SELECT DATEDIFF_UDF(AsTimeStamp,'INTERVAL ''1 01:10'' DAY TO MINUTE') FROM PUBLIC.TIMES;
SELECT DATEADD_UDF(AsTimeStamp,'INTERVAL ''1 1'' DAY TO HOUR') FROM PUBLIC.TIMES;
SELECT DATEDIFF_UDF(AsTimeStamp,'INTERVAL ''1 1'' DAY TO HOUR') FROM PUBLIC.TIMES;
SELECT DATEADD_UDF(AsTimeStamp,'INTERVAL ''10'' DAY') FROM PUBLIC.TIMES;
SELECT DATEDIFF_UDF(AsTimeStamp,'INTERVAL ''10'' DAY') FROM PUBLIC.TIMES;
SELECT DATEADD_UDF(AsTimeStamp,'INTERVAL ''3:05'' HOUR TO MINUTE') FROM PUBLIC.TIMES;
SELECT DATEDIFF_UDF(AsTimeStamp,'INTERVAL ''3:05'' HOUR TO MINUTE') FROM PUBLIC.TIMES;
SELECT DATEADD_UDF(AsTimeStamp,'INTERVAL ''5'' HOUR') FROM PUBLIC.TIMES;
SELECT DATEDIFF_UDF(AsTimeStamp,'INTERVAL ''5'' HOUR') FROM PUBLIC.TIMES;
SELECT DATEADD_UDF(AsTimeStamp,'INTERVAL ''5:10'' MINUTE TO SECOND') FROM PUBLIC.TIMES;
SELECT DATEDIFF_UDF(AsTimeStamp,'INTERVAL ''5:10'' MINUTE TO SECOND') FROM PUBLIC.TIMES;
SELECT DATEADD_UDF(AsTimeStamp,'INTERVAL ''30'' MINUTE') FROM PUBLIC.TIMES;
SELECT DATEDIFF_UDF(AsTimeStamp,'INTERVAL ''30'' MINUTE') FROM PUBLIC.TIMES;
SELECT DATEADD_UDF(AsTimeStamp,'INTERVAL ''333'' HOUR(3)') FROM PUBLIC.TIMES;
SELECT DATEDIFF_UDF(AsTimeStamp,'INTERVAL ''333'' HOUR(3)') FROM PUBLIC.TIMES;
SELECT DATEADD_UDF(AsTimeStamp,'INTERVAL ''15.6789'' SECOND(2,3)') FROM PUBLIC.TIMES;
SELECT DATEDIFF_UDF(AsTimeStamp,'INTERVAL ''15.6789'' SECOND(2,3)') FROM PUBLIC.TIMES;
SELECT DATEADD_UDF(AsDate,'INTERVAL ''1-1'' YEAR(2) TO MONTH') FROM PUBLIC.TIMES;
SELECT DATEDIFF_UDF(AsDate,'INTERVAL ''1-1'' YEAR(2) TO MONTH') FROM PUBLIC.TIMES;
SELECT DATEADD_UDF(AsDate,'INTERVAL ''2-1'' YEAR(4) TO MONTH') FROM PUBLIC.TIMES;
SELECT DATEDIFF_UDF(AsDate,'INTERVAL ''2-1'' YEAR(4) TO MONTH') FROM PUBLIC.TIMES;
SELECT DATEADD_UDF(AsDate,'INTERVAL ''1'' MONTH') FROM PUBLIC.TIMES;
SELECT DATEDIFF_UDF(AsDate,'INTERVAL ''1'' MONTH') FROM PUBLIC.TIMES;
SELECT DATEADD_UDF(AsDate,'INTERVAL ''2'' MONTH') FROM PUBLIC.TIMES;
SELECT DATEDIFF_UDF(AsDate,'INTERVAL ''2'' MONTH') FROM PUBLIC.TIMES;
SELECT DATEADD_UDF(AsDate,'INTERVAL ''1 01:00:00.222'' DAY TO SECOND(3)') FROM PUBLIC.TIMES;
SELECT DATEDIFF_UDF(AsDate,'INTERVAL ''1 01:00:00.222'' DAY TO SECOND(3)') FROM PUBLIC.TIMES;
SELECT DATEADD_UDF(AsDate,'INTERVAL ''1 01:10'' DAY TO MINUTE') FROM PUBLIC.TIMES;
SELECT DATEDIFF_UDF(AsDate,'INTERVAL ''1 01:10'' DAY TO MINUTE') FROM PUBLIC.TIMES;
SELECT DATEADD_UDF(AsDate,'INTERVAL ''1 1'' DAY TO HOUR') FROM PUBLIC.TIMES;
SELECT DATEDIFF_UDF(AsDate,'INTERVAL ''1 1'' DAY TO HOUR') FROM PUBLIC.TIMES;
SELECT DATEADD_UDF(AsDate,'INTERVAL ''10'' DAY') FROM PUBLIC.TIMES;
SELECT DATEDIFF_UDF(AsDate,'INTERVAL ''10'' DAY') FROM PUBLIC.TIMES;
SELECT DATEADD_UDF(AsDate,'INTERVAL ''3:05'' HOUR TO MINUTE') FROM PUBLIC.TIMES;
SELECT DATEDIFF_UDF(AsDate,'INTERVAL ''3:05'' HOUR TO MINUTE') FROM PUBLIC.TIMES;
SELECT DATEADD_UDF(AsDate,'INTERVAL ''5'' HOUR') FROM PUBLIC.TIMES;
SELECT DATEDIFF_UDF(AsDate,'INTERVAL ''5'' HOUR') FROM PUBLIC.TIMES;
SELECT DATEADD_UDF(AsDate,'INTERVAL ''5:10'' MINUTE TO SECOND') FROM PUBLIC.TIMES;
SELECT DATEDIFF_UDF(AsDate,'INTERVAL ''5:10'' MINUTE TO SECOND') FROM PUBLIC.TIMES;
SELECT DATEADD_UDF(AsDate,'INTERVAL ''30'' MINUTE') FROM PUBLIC.TIMES;
SELECT DATEDIFF_UDF(AsDate,'INTERVAL ''30'' MINUTE') FROM PUBLIC.TIMES;
SELECT DATEADD_UDF(AsDate,'INTERVAL ''333'' HOUR(3)') FROM PUBLIC.TIMES;
SELECT DATEDIFF_UDF(AsDate,'INTERVAL ''333'' HOUR(3)') FROM PUBLIC.TIMES;
SELECT DATEADD_UDF(AsDate,'INTERVAL ''15.6789'' SECOND(2,3)') FROM PUBLIC.TIMES;
SELECT DATEDIFF_UDF(AsDate,'INTERVAL ''15.6789'' SECOND(2,3)') FROM PUBLIC.TIMES;
SELECT DATEADD_UDF(UnKnown,'INTERVAL ''1-1'' YEAR(2) TO MONTH') FROM PUBLIC.UNKNOWN_TABLE;
SELECT DATEDIFF_UDF(UnKnown,'INTERVAL ''1-1'' YEAR(2) TO MONTH') FROM PUBLIC.UNKNOWN_TABLE;
SELECT DATEADD_UDF(UnKnown,'INTERVAL ''2-1'' YEAR(4) TO MONTH') FROM PUBLIC.UNKNOWN_TABLE;
SELECT DATEDIFF_UDF(UnKnown,'INTERVAL ''2-1'' YEAR(4) TO MONTH') FROM PUBLIC.UNKNOWN_TABLE;
SELECT DATEADD_UDF(UnKnown,'INTERVAL ''1'' MONTH') FROM PUBLIC.UNKNOWN_TABLE;
SELECT DATEDIFF_UDF(UnKnown,'INTERVAL ''1'' MONTH') FROM PUBLIC.UNKNOWN_TABLE;
SELECT DATEADD_UDF(UnKnown,'INTERVAL ''2'' MONTH') FROM PUBLIC.UNKNOWN_TABLE;
SELECT DATEDIFF_UDF(UnKnown,'INTERVAL ''2'' MONTH') FROM PUBLIC.UNKNOWN_TABLE;
SELECT DATEADD_UDF(UnKnown,'INTERVAL ''1 01:00:00.222'' DAY TO SECOND(3)') FROM PUBLIC.UNKNOWN_TABLE;
SELECT DATEDIFF_UDF(UnKnown,'INTERVAL ''1 01:00:00.222'' DAY TO SECOND(3)') FROM PUBLIC.UNKNOWN_TABLE;
SELECT DATEADD_UDF(UnKnown,'INTERVAL ''1 01:10'' DAY TO MINUTE') FROM PUBLIC.UNKNOWN_TABLE;
SELECT DATEDIFF_UDF(UnKnown,'INTERVAL ''1 01:10'' DAY TO MINUTE') FROM PUBLIC.UNKNOWN_TABLE;
SELECT DATEADD_UDF(UnKnown,'INTERVAL ''1 1'' DAY TO HOUR') FROM PUBLIC.UNKNOWN_TABLE;
SELECT DATEDIFF_UDF(UnKnown,'INTERVAL ''1 1'' DAY TO HOUR') FROM PUBLIC.UNKNOWN_TABLE;
SELECT DATEADD_UDF(UnKnown,'INTERVAL ''10'' DAY') FROM PUBLIC.UNKNOWN_TABLE;
SELECT DATEDIFF_UDF(UnKnown,'INTERVAL ''10'' DAY') FROM PUBLIC.UNKNOWN_TABLE;
SELECT DATEADD_UDF(UnKnown,'INTERVAL ''3:05'' HOUR TO MINUTE') FROM PUBLIC.UNKNOWN_TABLE;
SELECT DATEDIFF_UDF(UnKnown,'INTERVAL ''3:05'' HOUR TO MINUTE') FROM PUBLIC.UNKNOWN_TABLE;
SELECT DATEADD_UDF(UnKnown,'INTERVAL ''5'' HOUR') FROM PUBLIC.UNKNOWN_TABLE;
SELECT DATEDIFF_UDF(UnKnown,'INTERVAL ''5'' HOUR') FROM PUBLIC.UNKNOWN_TABLE;
SELECT DATEADD_UDF(UnKnown,'INTERVAL ''5:10'' MINUTE TO SECOND') FROM PUBLIC.UNKNOWN_TABLE;
SELECT DATEDIFF_UDF(UnKnown,'INTERVAL ''5:10'' MINUTE TO SECOND') FROM PUBLIC.UNKNOWN_TABLE;
SELECT DATEADD_UDF(UnKnown,'INTERVAL ''30'' MINUTE') FROM PUBLIC.UNKNOWN_TABLE;
SELECT DATEDIFF_UDF(UnKnown,'INTERVAL ''30'' MINUTE') FROM PUBLIC.UNKNOWN_TABLE;
SELECT DATEADD_UDF(UnKnown,'INTERVAL ''333'' HOUR(3)') FROM PUBLIC.UNKNOWN_TABLE;
SELECT DATEDIFF_UDF(UnKnown,'INTERVAL ''333'' HOUR(3)') FROM PUBLIC.UNKNOWN_TABLE;
SELECT DATEADD_UDF(UnKnown,'INTERVAL ''15.6789'' SECOND(2,3)') FROM PUBLIC.UNKNOWN_TABLE;
SELECT DATEDIFF_UDF(UnKnown,'INTERVAL ''15.6789'' SECOND(2,3)') FROM PUBLIC.UNKNOWN_TABLE;
Copy

Results

Oracle

Snowflake Operation

UDF

2022-12-05 11:00:00.000

2022-12-05 11:00:00.000

2022-12-05 11:00:00.000

2020-10-05 11:00:00.000

2020-10-05 11:00:00.000

2020-10-05 11:00:00.000

2023-12-05 11:00:00.000

2023-12-05 11:00:00.000

2023-12-05 11:00:00.000

2019-10-05 11:00:00.000

2019-10-05 11:00:00.000

2019-10-05 11:00:00.000

2021-12-05 11:00:00.000

2021-12-05 11:00:00.000

2021-12-05 11:00:00.000

2021-10-05 11:00:00.000

2021-10-05 11:00:00.000

2021-10-05 11:00:00.000

2022-01-05 11:00:00.000

2022-01-05 11:00:00.000

2022-01-05 11:00:00.000

2021-09-05 11:00:00.000

2021-09-05 11:00:00.000

2021-09-05 11:00:00.000

2021-11-06 12:00:00.222

2021-11-06 12:00:00.222

2021-11-06 12:00:00.222

2021-11-04 09:59:59.778

2021-11-04 09:59:59.778

2021-11-04 09:59:59.778

2021-11-06 12:10:00.000

2021-11-06 12:10:00.000

2021-11-06 12:10:00.000

2021-11-04 09:50:00.000

2021-11-04 09:50:00.000

2021-11-04 09:50:00.000

2021-11-06 12:00:00.000

2021-11-06 12:00:00.000

2021-11-06 12:00:00.000

2021-11-04 10:00:00.000

2021-11-04 10:00:00.000

2021-11-04 10:00:00.000

2021-11-15 11:00:00.000

2021-11-15 11:00:00.000

2021-11-15 11:00:00.000

2021-10-26 11:00:00.000

2021-10-26 11:00:00.000

2021-10-26 11:00:00.000

2021-11-05 14:05:00.000

2021-11-05 14:05:00.000

2021-11-05 14:05:00.000

2021-11-05 07:55:00.000

2021-11-05 07:55:00.000

2021-11-05 07:55:00.000

2021-11-05 16:00:00.000

2021-11-05 16:00:00.000

2021-11-05 16:00:00.000

2021-11-05 06:00:00.000

2021-11-05 06:00:00.000

2021-11-05 06:00:00.000

2021-11-05 11:05:10.000

2021-11-05 11:05:10.000

2021-11-05 11:05:10.000

2021-11-05 10:54:50.000

2021-11-05 10:54:50.000

2021-11-05 10:54:50.000

2021-11-05 11:30:00.000

2021-11-05 11:30:00.000

2021-11-05 11:30:00.000

2021-11-05 10:30:00.000

2021-11-05 10:30:00.000

2021-11-05 10:30:00.000

2021-11-19 08:00:00.000

2021-11-19 08:00:00.000

2021-11-19 08:00:00.000

2021-10-22 14:00:00.000

2021-10-22 14:00:00.000

2021-10-22 14:00:00.000

2021-11-05 11:00:15.679

2021-11-05 11:00:16.000

2021-11-05 11:00:15.678

2021-11-05 10:59:44.321

2021-11-05 10:59:44.000

2021-11-05 11:00:15.678

2022-12-06 00:00:00.000

2022-12-06

2022-12-06

2020-10-06 00:00:00.000

2020-10-06

2020-10-06

2023-12-06 00:00:00.000

2023-12-06

2023-12-06

2019-10-06 00:00:00.000

2019-10-06

2019-10-06

2021-12-06 00:00:00.000

2021-12-06

2021-12-06

2021-12-06 00:00:00.000

2021-10-06

2021-10-06

2022-01-06 00:00:00.000

2022-01-06

2022-01-06

2021-09-06 00:00:00.000

2021-09-06

2021-09-06

2021-11-07 01:00:00.000

2021-11-07 01:00:00.222

2021-11-07

2021-11-04 22:59:59.000

2021-11-04 22:59:59.778

2021-11-04

2021-11-07 01:10:00.000

2021-11-07 01:10:00.000

2021-11-07

2021-11-04 22:50:00.000

2021-11-04 22:50:00.000

2021-11-04

2021-11-07 01:00:00.000

2021-11-07 01:00:00.000

2021-11-07

2021-11-04 23:00:00.000

2021-11-04 23:00:00.000

2021-11-04

2021-11-16 00:00:00.000

2021-11-16

2021-11-16

2021-10-27 00:00:00.000

2021-10-27

2021-10-27

2021-11-06 03:05:00.000

2021-11-06 03:05:00.000

2021-11-06

2021-11-05 20:55:00.000

2021-11-05 20:55:00.000

2021-11-05

2021-11-06 05:00:00.000

2021-11-06 05:00:00.000

2021-11-06

2021-11-05 19:00:00.000

2021-11-05 19:00:00.000

2021-11-05

2021-11-06 00:05:10.000

2021-11-06 00:05:10.000

2021-11-06

2021-11-05 23:54:50.000

2021-11-05 23:54:50.000

2021-11-05

2021-11-06 00:30:00.000

2021-11-06 00:30:00.000

2021-11-06

2021-11-05 23:30:00.000

2021-11-05 23:30:00.000

2021-11-05

2021-11-19 21:00:00.000

2021-11-19 21:00:00.000

2021-11-19

2021-10-23 03:00:00.000

2021-10-23 03:00:00.000

2021-10-23

2021-11-06 00:00:15.000

2021-11-06 00:00:16.000

2021-11-06

2021-11-05 23:59:44.000

2021-11-05 23:59:44.000

2021-11-05

2010-11-01 12:00:00.000

2010-11-01 12:00:00.000

2010-11-01 12:00:00.000

2008-09-01 12:00:00.000

2008-09-01 12:00:00.000

2008-09-01 12:00:00.000

2011-11-01 12:00:00.000

2011-11-01 12:00:00.000

2011-11-01 12:00:00.000

2007-09-01 12:00:00.000

2007-09-01 12:00:00.000

2007-09-01 12:00:00.000

2009-11-01 12:00:00.000

2009-11-01 12:00:00.000

2009-11-01 12:00:00.000

2009-09-01 12:00:00.000

2009-09-01 12:00:00.000

2009-09-01 12:00:00.000

2009-12-01 12:00:00.000

2009-12-01 12:00:00.000

2009-12-01 12:00:00.000

2009-08-01 12:00:00.000

2009-08-01 12:00:00.000

2009-08-01 12:00:00.000

2009-10-02 13:00:00.222

2009-10-02 13:00:00.222

2009-10-02 13:00:00.222

2009-09-30 10:59:59.778

2009-09-30 10:59:59.778

2009-09-30 10:59:59.778

2009-10-02 13:10:00.000

2009-10-02 13:10:00.000

2009-10-02 13:10:00.000

2009-09-30 10:50:00.000

2009-09-30 10:50:00.000

2009-09-30 10:50:00.000

2009-10-02 13:00:00.000

2009-10-02 13:00:00.000

2009-10-02 13:00:00.000

2009-09-30 11:00:00.000

2009-09-30 11:00:00.000

2009-09-30 11:00:00.000

2009-10-11 12:00:00.000

2009-10-11 12:00:00.000

2009-10-11 12:00:00.000

2009-09-21 12:00:00.000

2009-09-21 12:00:00.000

2009-09-21 12:00:00.000

2009-10-01 15:05:00.000

2009-10-01 15:05:00.000

2009-10-01 15:05:00.000

2009-10-01 08:55:00.000

2009-10-01 08:55:00.000

2009-10-01 08:55:00.000

2009-10-01 17:00:00.000

2009-10-01 17:00:00.000

2009-10-01 17:00:00.000

2009-10-01 07:00:00.000

2009-10-01 07:00:00.000

2009-10-01 07:00:00.000

2009-10-01 12:05:10.000

2009-10-01 12:05:10.000

2009-10-01 12:05:10.000

2009-10-01 11:54:50.000

2009-10-01 11:54:50.000

2009-10-01 11:54:50.000

2009-10-01 12:30:00.000

2009-10-01 12:30:00.000

2009-10-01 12:30:00.000

2009-10-01 11:30:00.000

2009-10-01 11:30:00.000

2009-10-01 11:30:00.000

2009-10-15 09:00:00.000

2009-10-15 09:00:00.000

2009-10-15 09:00:00.000

2009-09-17 15:00:00.000

2009-09-17 15:00:00.000

2009-09-17 15:00:00.000

2009-10-01 12:00:15.679

2009-10-01 12:00:16.000

2009-10-01 12:00:15.678

2009-10-01 11:59:44.321

2009-10-01 11:59:44.000

2009-10-01 11:59:44.321

Known Issues

No issues were found.

Related EWIs

  1. SSC-FDM-OR0042: Date Type Transformed To Timestamp Has A Different Behavior

PL SQL Data Types

BINARY_INTEGER Data Type

This data type is identical to the PLS_INTEGER data type.

PLS_INTEGER Data Type

Description

The PLS_INTEGER data type stores signed integers in the range -2,147,483,648 through 2,147,483,647, represented in 32 bits. (Oracle Language Reference PLS_INTEGER Data Type)

The PLS_INTEGER datatype is transformed to NUMBER. This transformation also applies for each PLS_INTEGER subtype:

  • NATURAL

  • NATURALN

  • POSITIVE

  • POSITIVEN

  • SIGNTYPE

  • SIMPLE_INTEGER

Warning

Some of these subtypes are currently not recognized by SnowConvert AI so they are converted to VARIANT and considered user-defined types. There is already a work item to fix the issue.

Sample Source Patterns

Please, consider the following table and its inserts for the examples below:

Code

CREATE TABLE PLS_INTEGER_TABLE(
	COL NUMBER
);
Copy

PLS_INTEGER usage in procedural blocks

Oracle
CREATE OR REPLACE PROCEDURE PLS_INTEGER_EXAMPLE
IS
-- PLS_INTEGER AND BINARY INTEGER ALIASES
PLS_INTEGER_VAR PLS_INTEGER;
BINARY_INTEGER_VAR BINARY_INTEGER;

NUMBER_VAR NUMBER;
BEGIN
	NUMBER_VAR := 2;

	-- maximum possible value
	PLS_INTEGER_VAR := 2147483647;
	
	-- implicit cast to number
	INSERT INTO PLS_INTEGER_TABLE (COL) VALUES (PLS_INTEGER_VAR);
	PLS_INTEGER_VAR := 2147483647;
	
	-- operations with other numeric expressions
	INSERT INTO PLS_INTEGER_TABLE (COL) VALUES (PLS_INTEGER_VAR + 1);
	INSERT INTO PLS_INTEGER_TABLE (COL) VALUES (PLS_INTEGER_VAR + NUMBER_VAR);
END;

CALL PLS_INTEGER_EXAMPLE();
SELECT * FROM PLS_INTEGER_TABLE;
Copy
Result

COL

2147483647

2147483648

2147483649

Snowflake
CREATE OR REPLACE PROCEDURE PLS_INTEGER_EXAMPLE ()
RETURNS VARCHAR
LANGUAGE SQL
COMMENT = '{"origin":"sf_sc","name":"snowconvert","version":{"major":1, "minor":0},{"attributes":{"component":"oracle"}}'
EXECUTE AS CALLER
AS
$$
	DECLARE
		-- PLS_INTEGER AND BINARY INTEGER ALIASES
		PLS_INTEGER_VAR NUMBER;
		BINARY_INTEGER_VAR NUMBER;

		NUMBER_VAR NUMBER(38, 18);
	BEGIN
		NUMBER_VAR := 2;
	-- maximum possible value
		PLS_INTEGER_VAR := 2147483647;

		-- implicit cast to number
		INSERT INTO PLS_INTEGER_TABLE(COL) VALUES (:PLS_INTEGER_VAR);
		PLS_INTEGER_VAR := 2147483647;

	-- operations with other numeric expressions
	INSERT INTO PLS_INTEGER_TABLE(COL) VALUES (:PLS_INTEGER_VAR + 1);
	INSERT INTO PLS_INTEGER_TABLE(COL) VALUES (:PLS_INTEGER_VAR + :NUMBER_VAR);
	END;
$$;

CALL PLS_INTEGER_EXAMPLE();

SELECT * FROM
	PLS_INTEGER_TABLE;
Copy
Result

COL

2147483647

2147483648

2147483649

Known Issues

1. Storage and performance features were not preserved

Oracle PLS_INTEGER has some advantages in terms of storage size and performance in arithmetic operations. These features were not emulated because Snowflake NUMBER does not have them. For more information, check the PLS_INTEGER documentation.

Related EWIs

No related EWIs.

Character Data Types

Character data types store character (alphanumeric) data, which are words and free-form text, in the database character set or national character set. (Oracle SQL Language Reference Character Data Types)

CHAR Data type

Description

The CHAR data type specifies a fixed-length character string in the database character set.(Oracle SQL Language Reference CHAR Data type)

As denoted in the Oracle documentation, size in CHAR data type is a length constraint and should not be confused with capacity. Total characters that can be stored in a CHAR may vary according to the database character set and configuration, but commonly the maximum size allowed is 2000.

In Snowflake, CHAR types are synonymous with VARCHAR, and as you can check here:

Snowflake SQL Language reference text data types

The standard maximum size is quite bigger. But, this doesn’t mean that a Snowflake VARCHAR will consume more storage, as mentioned in their documentation:

A 1-character string in a VARCHAR(16777216) column only consumes a single character.

CHAR [ (size [ BYTE | CHAR ]) ]
Copy

Sample Source Patterns

Char data types in Create Table

Oracle
CREATE TABLE char_data_types
(
	char_column1 CHAR,
	char_column2 CHAR(15),
	char_column3 CHAR(15 BYTE),
	char_column4 CHAR(15 CHAR)
);

INSERT INTO char_data_types VALUES ('H', 'Hello world', 'Hello world', 'Hello world');
Copy
Snowflake
CREATE OR REPLACE TABLE char_data_types
(
	char_column1 CHAR,
	char_column2 CHAR(15),
	char_column3 CHAR(15),
	char_column4 CHAR(15)
)
COMMENT = '{"origin":"sf_sc","name":"snowconvert","version":{"major":1, "minor":0},{"attributes":{"component":"oracle"}}'
;

INSERT INTO char_data_types
VALUES ('H', 'Hello world', 'Hello world', 'Hello world');
Copy

Retrieving data from char columns

Oracle
SELECT * FROM char_data_types;
Copy
Result

CHAR_COLUMN1

CHAR_COLUMN2

CHAR_COLUMN3

CHAR_COLUMN4

H

Hello world

Hello world

Hello world

Snowflake
SELECT * FROM
char_data_types;
Copy
Result

CHAR_COLUMN1

CHAR_COLUMN2

CHAR_COLUMN3

CHAR_COLUMN4

H

Hello world

Hello world

Hello world

Note

In Oracle, the value is filled with empty spaces to fit the fixed size determined in the column definition. On the other hand, Snowflakes uses dynamic size (keeping the length restriction) to store the value.

Checking internal data types for CHAR

As mentioned in the beginning, Snowflake internally uses a VARCHAR for the CHAR type columns, we can confirm it by describing the tables:

Oracle

Snowflake

Note

The length restriction is preserved, but the memory that the columns are using is different on each DBMS.

Retrieving the size in bytes of each column:

Oracle
SELECT 
LENGTHB(char_column1),
LENGTHB(char_column2),
LENGTHB(char_column3),
LENGTHB(char_column4)  
FROM char_data_types;
Copy
Result

LENGTHB(CHAR_COLUMN1)

LENGTHB(CHAR_COLUMN2)

LENGTHB(CHAR_COLUMN3)

LENGTHB(CHAR_COLUMN4)

1

15

15

15

Snowflake
SELECT
OCTET_LENGTH(char_column1) /*** SSC-FDM-OR0015 - LENGTHB TRANSFORMED TO OCTET_LENGTH RESULTS MAY VARY DUE TO MEMORY MANAGEMENT OF DBMS ***/,
OCTET_LENGTH(char_column2) /*** SSC-FDM-OR0015 - LENGTHB TRANSFORMED TO OCTET_LENGTH RESULTS MAY VARY DUE TO MEMORY MANAGEMENT OF DBMS ***/,
OCTET_LENGTH(char_column3) /*** SSC-FDM-OR0015 - LENGTHB TRANSFORMED TO OCTET_LENGTH RESULTS MAY VARY DUE TO MEMORY MANAGEMENT OF DBMS ***/,
OCTET_LENGTH(char_column4) /*** SSC-FDM-OR0015 - LENGTHB TRANSFORMED TO OCTET_LENGTH RESULTS MAY VARY DUE TO MEMORY MANAGEMENT OF DBMS ***/
FROM
char_data_types;
Copy
Result

OCTET_LENGTH(CHAR_COLUMN1)

OCTET_LENGTH(CHAR_COLUMN2)

OCTET_LENGTH(CHAR_COLUMN3)

OCTET_LENGTH(CHAR_COLUMN4)

1

11

11

11

Note

Besides these slight differences, the integrity of the data is preserved.

Known Issues

1. Results obtained from some built-in functions may vary

As explained in the previous section, there may be cases using built-in functions over the columns that may retrieve different results. For example, get the length of a column.

Related EWIs

  1. SSC-FDM-OR0015: LENGTHB transformed to OCTET_LENGTH.

NCHAR Data Type

Description

The NCHAR data type specifies a fixed-length character string in the national character set. (Oracle SQL Language Reference NCHAR)

NCHAR allows to store special characters with their Unicode to be preserved across any usage, these special characters may need more bits to be stored and that is why, by default, the NCHAR character set is AL16UTF16, contrary to the common character data set for CHAR which is usually AL32UTF8.

NCHAR is preserved as NCHAR in Snowflake, but, in the background, Snowflake uses VARCHAR. Transformation information related to CHAR is also valid for NCHAR.

NCHAR [ (size) ]

Copy

Sample Souce Patterns

Nchar data types in Create Table

Oracle
CREATE TABLE nchar_data_types
(
	nchar_column1 NCHAR,
	nchar_column2 NCHAR(5)
);

INSERT INTO nchar_data_types VALUES ('ភ', 'ភាសាខ');
Copy
Snowflake
CREATE OR REPLACE TABLE nchar_data_types
(
	nchar_column1 NCHAR,
	nchar_column2 NCHAR(5)
)
COMMENT = '{"origin":"sf_sc","name":"snowconvert","version":{"major":1, "minor":0},{"attributes":{"component":"oracle"}}'
;

INSERT INTO nchar_data_types
VALUES ('ភ', 'ភាសាខ');
Copy

Note

In Oracle, trying to insert these values in a CHAR column with the same size, will trigger an error: value too large for column.

Retrieving information from Nchar columns

Oracle
SELECT * FROM nchar_data_types;
Copy
Result

NCHAR_COLUMN1

NCHAR_COLUMN2

ភាសាខ

Snowflake
SELECT * FROM
nchar_data_types;
Copy
Result

NCHAR_COLUMN1

NCHAR_COLUMN2

ភាសាខ

Retrieving the size in bytes of each column

Oracle
SELECT 
LENGTHB(nchar_column1),
LENGTHB(nchar_column2)
FROM nchar_data_types;
Copy
Result

LENGTHB(NCHAR_COLUMN1)

LENGTHB(NCHAR_COLUMN2)

                 2|                    10|
Copy
Snowflake
SELECT
OCTET_LENGTH(nchar_column1) /*** SSC-FDM-OR0015 - LENGTHB TRANSFORMED TO OCTET_LENGTH RESULTS MAY VARY DUE TO MEMORY MANAGEMENT OF DBMS ***/,
OCTET_LENGTH(nchar_column2) /*** SSC-FDM-OR0015 - LENGTHB TRANSFORMED TO OCTET_LENGTH RESULTS MAY VARY DUE TO MEMORY MANAGEMENT OF DBMS ***/
FROM
nchar_data_types;
Copy
Result

OCTET_LENGTH(NCHAR_COLUMN1)

OCTET_LENGTH(NCHAR_COLUMN2)

                      3|                         15|
Copy

Note that the number specified in the column declaration is the size in characters and not in bytes, That is why we see more space used to store those special characters.

Note

In Snowflake, VARCHAR uses UTF-8, size can vary depending on the Unicode character that can be represented in 1, 2, 3, or 4 bytes. In this case, the Cambodian character is using 3 bytes to be stored.

Note

Besides these slight differences, the integrity of the data is preserved.

Known Issues

1. Results obtained from some built-in functions may vary

As explained in the previous section, there may be cases using built-in functions over the columns that may retrieve different results. For example, get the length of a column.

Related EWIs

  1. SSC-FDM-OR0015: LENGTHB transformed to OCTET_LENGTH.

NVARCHAR2 Data Type

Description

The NVARCHAR2 data type specifies a variable-length character string in the national character set. (Oracle SQL Language Reference NVARCHAR2)

NVARCHAR2 (size)

Copy

NVARCHAR2 allows to store special characters with their Unicode to be preserved across any usage, these special characters may need more bits to be stored and that is why, by default, the NVARCHAR2 character set is AL16UTF16, contrary to the common character data set for VARCHAR2 which is usually AL32UTF8.

NVARCHAR transformed to Snowflake VARCHAR, Transformation information related to VARCHAR2, is also valid for NVARCHAR2.

NVARCHAR2 (size)

Copy

Sample Souce Patterns

Nvarchar2 data type in Create Table

Oracle
CREATE TABLE nvarchar2_data_types
(
	nvarchar2_column NVARCHAR2 (5)
);

INSERT INTO nvarchar2_data_types VALUES ('ភាសាខ');
Copy
Snowflake
CREATE OR REPLACE TABLE nvarchar2_data_types
	(
		nvarchar2_column VARCHAR(5)
	)
	COMMENT = '{"origin":"sf_sc","name":"snowconvert","version":{"major":1, "minor":0},{"attributes":{"component":"oracle"}}'
	;

	INSERT INTO nvarchar2_data_types
	VALUES ('ភាសាខ');
Copy

Note

In Oracle, trying to insert these values in a VARCHAR2 column with the same size, will trigger an error: value too large for column.

Retrieving information from Nchar columns

Oracle
SELECT * FROM nvarchar2_data_types;
Copy
Result

NVARCHAR2_COLUMN

ភាសាខ

Snowflake
SELECT * FROM
nvarchar2_data_types;
Copy
Result

NVARCHAR2_COLUMN

ភាសាខ

Retrieving the size in bytes of each column

Oracle
SELECT 
LENGTHB(nvarchar2_column)
FROM nvarchar2_data_types;
Copy
Result

LENGTHB(NVARCHAR2_COLUMN)

10

Snowflake
SELECT
OCTET_LENGTH(nvarchar2_column) /*** SSC-FDM-OR0015 - LENGTHB TRANSFORMED TO OCTET_LENGTH RESULTS MAY VARY DUE TO MEMORY MANAGEMENT OF DBMS ***/
FROM
nvarchar2_data_types;
Copy
Result

OCTET_LENGTH(NVARCHAR2_COLUMN)

15

Note that the number specified in the column declaration is the size in characters and not in bytes, That is why we see more space used to store those special characters.

Note

In Snowflake, VARCHAR uses UTF-8, size can vary depending on the Unicode character that can be represented in 1, 2, 3, or 4 bytes. In this case, the Cambodian characters are using 3 bytes to be stored.

Note

Besides these slight differences, the integrity of the data is preserved.

Known Issues

1. Results obtained from some built-in functions may vary

As explained in the previous section, there may be cases using built-in functions over the columns that may retrieve different results. For example, get the length of a column.

Related EWIs

  1. SSC-FDM-OR0015: LENGTHB transformed to OCTET_LENGTH.

VARCHAR Data Type

Description

Oracle recommends using VARCHAR2 instead of VARCHAR as explained in their documentation:

Oracle SQL Language reference Varchar

Even though, the syntaxis is parsed and transformed using the ANSI, DB2, and SQL/DS Data Types.

VARCHAR2 Data Type

Description

The VARCHAR2 data type specifies a variable-length character string in the database character set. (Oracle SQL Language Reference VARCHAR2)

As denoted in the Oracle documentation, size in VARCHAR2 data type is a length constraint and should not be confused with capacity. Total characters that can be stored in a VARCHAR2 may vary according to the database character set and configuration, but commonly the maximum size allowed is 4000.

VARCHAR2 is translated to Snowflake VARCHAR which can store a bigger number of bytes/characters by default. Either way, the memory used is variable using the size of the value stored in the column as same as in Oracle.

VARCHAR2 (size [ BYTE | CHAR ])
Copy

Sample Source Patterns

Varchar2 data types in Create Table

Oracle
CREATE TABLE varchar2_data_types
(
	varchar2_column1 VARCHAR2(5),
	varchar2_column2 VARCHAR2(5 BYTE),
	varchar2_column3 VARCHAR2(5 CHAR)
);

INSERT INTO varchar2_data_types VALUES ('H', 'Hello', 'Hell');
Copy
Snowflake
CREATE OR REPLACE TABLE varchar2_data_types
	(
		varchar2_column1 VARCHAR(5),
		varchar2_column2 VARCHAR(5),
		varchar2_column3 VARCHAR(5)
	)
	COMMENT = '{"origin":"sf_sc","name":"snowconvert","version":{"major":1, "minor":0},{"attributes":{"component":"oracle"}}'
	;

	INSERT INTO varchar2_data_types
	VALUES ('H', 'Hello', 'Hell');
Copy

Retrieving data from varchar columns

Oracle
SELECT * FROM varchar2_data_types;
Copy
Result

VARCHAR2_COLUMN1

VARCHAR2_COLUMN2

VARCHAR2_COLUMN3

H

Hello

Hell

Snowflake
SELECT * FROM
varchar2_data_types;
Copy
Result

VARCHAR2_COLUMN1

VARCHAR2_COLUMN2

VARCHAR2_COLUMN3

H

Hello

Hell

Reviewing the variable size in the columns

Oracle
SELECT
LENGTHB(varchar2_column1),
LENGTHB(varchar2_column2),
LENGTHB(varchar2_column3) 
FROM VARCHAR2_DATA_TYPES;
Copy
Result

LENGTHB(VARCHAR2_COLUMN1)

LENGTHB(VARCHAR2_COLUMN2)

LENGTHB(VARCHAR2_COLUMN3)

1

5

4

Snowflake
SELECT
OCTET_LENGTH(varchar2_column1) /*** SSC-FDM-OR0015 - LENGTHB TRANSFORMED TO OCTET_LENGTH RESULTS MAY VARY DUE TO MEMORY MANAGEMENT OF DBMS ***/,
OCTET_LENGTH(varchar2_column2) /*** SSC-FDM-OR0015 - LENGTHB TRANSFORMED TO OCTET_LENGTH RESULTS MAY VARY DUE TO MEMORY MANAGEMENT OF DBMS ***/,
OCTET_LENGTH(varchar2_column3) /*** SSC-FDM-OR0015 - LENGTHB TRANSFORMED TO OCTET_LENGTH RESULTS MAY VARY DUE TO MEMORY MANAGEMENT OF DBMS ***/
FROM
VARCHAR2_DATA_TYPES;
Copy
Result

OCTET_LENGTH(VARCHAR2_COLUMN1)

OCTET_LENGTH(VARCHAR2_COLUMN2)

OCTET_LENGTH(VARCHAR2_COLUMN3)

1

5

4

Known Issues

No issues were found.

Related EWIs

  1. SSC-FDM-OR0015: LENGTHB transformed to OCTET_LENGTH.

LOB Data Types

Description

The built-in LOB data types BLOB, CLOB, and NCLOB (stored internally) and BFILE (stored externally) can store large and unstructured data such as text, image, video, and spatial data. (Oracle SQL Language Reference LOB Data Type)

BFILE
BLOB
CLOB
NCLOB
Copy

Warning

LOB data types are not supported in Snowflake. Per Snowflake’s documentation, it is recommended to transform CLOB to VARCHAR, and BLOB to BINARY, however, there are several limitations. {% endhint %}

Warning

LOB properties for tables are also not supported in Snowflake. {% endhint %}

BFILE Data Type

Description

Contains a locator to a large binary file stored outside the database. Enables byte stream I/O access to external LOBs residing on the database server. A BFILE column or attribute stores a BFILE locator, which serves as a pointer to a binary file on the server file system. The locator maintains the directory name and the filename. (Oracle SQL Language Reference BFILE Data Type).

Warning

BFILE Data Type is not supported in Snowflake. VARCHAR is used instead.

Sample Source Patterns

Bfile data type in Create Table

Warning

Oracle BFILE columns are used to store a locator with the directory and filename. They are changed to Snowflake VARCHAR in order to store the directory and filename into the column. However, loading the content of the file must be done manually.

Oracle
--Create Table
CREATE TABLE bfile_table 
(
    col1 BFILE 
);

--Insert Bfilename
INSERT INTO bfile_table VALUES (
    BFILENAME('mydirectory', 'myfile.png')
);

--Select
SELECT * FROM bfile_table;
Copy
Result

COL1

[BFILE:myfile.png]

Snowflake
--Create Table
CREATE OR REPLACE TABLE bfile_table
    (
        col1
    !!!RESOLVE EWI!!! /*** SSC-EWI-OR0105 - ADDITIONAL WORK IS NEEDED FOR BFILE COLUMN USAGE. BUILD_STAGE_FILE_URL FUNCTION IS A RECOMMENDED WORKAROUND ***/!!!
    VARCHAR
    )
COMMENT = '{"origin":"sf_sc","name":"snowconvert","version":{"major":1, "minor":0},{"attributes":{"component":"oracle"}}'
;

--Insert Bfilename
INSERT INTO bfile_table
VALUES (PUBLIC.BFILENAME_UDF('mydirectory', 'myfile.png')
);

--Select
SELECT * FROM
    bfile_table;
Copy
Result

COL1

mydirectory\myfile.png

Warning

UDF added to replace BFILENAME().

UDF Added

CREATE OR REPLACE FUNCTION PUBLIC.BFILENAME_UDF (DIRECTORYNAME STRING, FILENAME STRING)
RETURNS STRING
LANGUAGE SQL
IMMUTABLE 
COMMENT = '{"origin":"sf_sc","name":"snowconvert","version":{"major":1, "minor":0},"attributes":{"component":"udf"}}'
AS
$$
	DIRECTORYNAME || '\\' || FILENAME
$$;
Copy

Known Issues

1. No access to the DBMS_LOB built-in package

Since LOB data types are not supported in Snowflake there is no equivalent for the DBMS_LOB functions and there are no implemented workarounds yet.

Related EWIs

  1. SSC-EWI-OR0105: Additional work is needed for BFILE column usage. BUILD_STAGE_URL function is a recommended workaround.

BLOB Data Type

Description

The BLOB data type stores unstructured binary large objects. BLOB objects can be thought of as bitstreams with no character set semantics. (Oracle SQL Language Reference BLOB Data Type).

Warning

BLOB Data Type is not supported in Snowflake. BINARY is used instead.

Sample Source Patterns

BLOB in Create Table

Oracle
CREATE TABLE blobtable( blob_column BLOB, empty_column BLOB );

INSERT INTO blobtable VALUES (NULL, EMPTY_BLOB());
Copy
Snowflake
CREATE OR REPLACE TABLE blobtable ( blob_column BINARY,
empty_column BINARY
)
COMMENT = '{"origin":"sf_sc","name":"snowconvert","version":{"major":1, "minor":0},{"attributes":{"component":"oracle"}}'
;

INSERT INTO blobtable
VALUES (NULL, TO_BINARY(' '));
Copy

Retrieving Data

Oracle
SELECT * FROM blobtable;
Copy
Result

BLOB_COLUMN

EMPTY_COLUMN

[NULL]

[BLOB]

Snowflake
SELECT * FROM
blobtable;
Copy
Result

BLOB_COLUMN

EMPTY_COLUMN

NULL

Functional Example

Warning

This example is not a translation of SnowConvert AI, it is only used to show the functional equivalence between Oracle BLOB and Snowflake BINARY

Warning

We are using “utl_raw.cast_to_raw” and “DBMS_LOB.SUBSTR” functions. The conversion for these functions is currently not supported by SnowConvert.

Oracle
INSERT INTO blobtable VALUES(
utl_raw.cast_to_raw('hello world'), EMPTY_BLOB());

SELECT DBMS_LOB.SUBSTR(blob_column) AS result
FROM blobtable;
Copy
Result

RESULT

[NULL]

hello world

Snowflake
INSERT INTO blobtable
VALUES(
!!!RESOLVE EWI!!! /*** SSC-EWI-OR0076 - TRANSLATION FOR BUILT-IN PACKAGE 'utl_raw.cast_to_raw' IS NOT CURRENTLY SUPPORTED. ***/!!!
'' AS cast_to_raw, TO_BINARY(' '));


SELECT
SUBSTR(blob_column, 1) AS result
FROM
blobtable;
Copy
Result

RESULT

[NULL]

hello world

Known Issues

1. The difference in max length BLOB (Oracle) and BINARY (Snowflake)

An Oracle BLOB column’s maximum size is (4 gigabytes - 1) * (database block size), but Snowflake BINARY is limited to 8MB.

2. Empty value with EMPTY_BLOB

Initializing a column using EMPTY_BLOB() will return an empty LOB locator. While after translation the column will return a string with ‘ ‘.

3. No access to the DBMS_LOB built-in package

Since LOB data types are not supported in Snowflake there is no equivalent for the DBMS_LOB functions and there are no implemented workarounds yet.

Related EWIs

  1. SSC-EWI-OR0076: Built In Package Not Supported.

CLOB Data Type

Description

A character large object containing single-byte or multibyte characters. Both fixed-width and variable-width character sets are supported, both using the database character set. (Oracle SQL Language Reference CLOB Data Type).

Warning

CLOB Data Type is not supported in Snowflake. VARCHAR is used instead.

Sample Source Patterns

CLOB in Create Table

Oracle
CREATE TABLE clobtable ( clob_column CLOB, empty_column CLOB );

INSERT INTO clobtable VALUES ( 'THIS IS A TEST', EMPTY_CLOB() );
Copy
Snowflake
CREATE OR REPLACE TABLE clobtable ( clob_column VARCHAR,
empty_column VARCHAR
)
COMMENT = '{"origin":"sf_sc","name":"snowconvert","version":{"major":1, "minor":0},{"attributes":{"component":"oracle"}}'
;

INSERT INTO clobtable
VALUES ( 'THIS IS A TEST', TO_VARCHAR(' - '));
Copy

Retrieving Data

Oracle
SELECT * FROM clobtable;
Copy
Result

CLOB_COLUMN

EMPTY_COLUMN

THIS IS A TEST

Snowflake
SELECT * FROM
clobtable;
Copy
Result

CLOB_COLUMN

EMPTY_COLUMN

THIS IS A TEST

-

Known Issues

1. The difference in max length CLOB (Oracle) and VARCHAR (Snowflake)

An Oracle CLOB column maximum size is (4 gigabytes - 1) * (database block size), but Snowflake VARCHAR is limited to 16MB.

2. Empty value with EMPTY_CLOB

Initializing a column using EMPTY_CLOB() will return an empty LOB locator. While in Snowflake after translation the column will return a string with ‘ - ‘.

3. No access to the DBMS_LOB built-in package

Since LOB data types are not supported in Snowflake there is not an equivalent for the DBMS_LOB functions and there are no implemented workarounds yet.

Related EWIs

No related EWIs.

NCLOB Data type

Description

A character large object containing Unicode characters. Both fixed-width and variable-width character sets are supported, both using the database national character set. (Oracle SQL Language Reference NCLOB Data Type).

Warning

NCLOB Data Type is not supported in Snowflake. VARCHAR is used instead.

Sample Source Patterns

NCLOB in Create Table

Oracle
CREATE TABLE nclobtable ( nclob_column NCLOB, empty_column NCLOB );

INSERT INTO nclobtable VALUES ( 'THIS IS A TEST', EMPTY_CLOB() );
Copy
Snowflake
CREATE OR REPLACE TABLE nclobtable ( nclob_column VARCHAR,
empty_column VARCHAR
)
COMMENT = '{"origin":"sf_sc","name":"snowconvert","version":{"major":1, "minor":0},{"attributes":{"component":"oracle"}}'
;

INSERT INTO nclobtable
VALUES ( 'THIS IS A TEST', TO_VARCHAR(' - '));
Copy

Retrieving Data

Oracle
SELECT * FROM nclobtable;
Copy
Result

NCLOB_COLUMN

EMPTY_COLUMN

THIS IS A TEST

Snowflake
SELECT * FROM
nclobtable;
Copy
Result

NCLOB_COLUMN

EMPTY_COLUMN

THIS IS A TEST

-

Known Issues

1. The difference in max length CLOB (Oracle) and VARCHAR (Snowflake)

An Oracle NCLOB column maximum size is (4 gigabytes - 1) * (database block size), but Snowflake VARCHAR is limited to 16MB.

2. Empty value with EMPTY_CLOB

Initializing a column using EMPTY_CLOB() will return an empty LOB locator. While after translation the column will return a string with ‘ - ‘.

3. No access to the DBMS_LOB built-in package

Since LOB data types are not supported in Snowflake there is not an equivalent for the DBMS_LOB functions and there are no implemented workarounds yet.

Related EWIs

No related EWIs.