SnowConvert AI - Redshift - Built-in functions

Note

For more information about built-in functions and their Snowflake equivalents, also see Common built-in functions.

Aggregate Functions

Aggregate functions compute a single result value from a set of input values. (Redshift SQL Language Reference Aggregate Functions).

Redshift

Snowflake

ANY_VALUE ( [ DISTINCT

ALL ] expression )

AVG ( [ DISTINCT | ALL ] expression )

AVG ( [ DISTINCT ] expression)

Notes: Redshift and Snowflake may show different precision/decimals due to data type rounding/formatting.

COUNT

COUNT

LISTAGG

LISTAGG

Notes: Redshift’s DISTINCT ignores trailing spaces (‘a ‘ = ‘a’); Snowflake’s does not. (See SSC-FDM-PG0013).

MAX

MAX

MEDIAN

MEDIAN

Notes: Snowflake does not allow the use of date types, while Redshift does. (See SSC-FDM-PG0013).

MIN

MIN

PERCENTILE_CONT

PERCENTILE_CONT

STDDEV/STDDEV_SAMP ( [ DISTINCT

ALL ] expression)

STDDEV_POP ( [ DISTINCT

SUM

SUM

VARIANCE/VAR_SAMP ( [ DISTINCT

ALL ] expression)

VAR_POP ( [ DISTINCT

Array Functions

Creates an array of the SUPER data type. (Redshift SQL Language Reference Array Functions).

Redshift

Snowflake

ARRAY ( [ expr1 ] [ , expr2 [ , … ] ] )

ARRAY_CONSTRUCT

( [ <expr1> ] [ , <expr2> [ , … ] ] )

ARRAY_CONCAT ( super_expr1, super_expr2 )

ARRAY_CAT ( <array1> , <array2> )

ARRAY_FLATTEN

( super_expr1,super_expr2,.. )

ARRAY_FLATTEN ( <array> )

Notes: the results may vary between platforms (See SSC-FDM-PG0013).

GET_ARRAY_LENGTH ( super_expr )

ARRAY_SIZE ( <array> | <variant>)

SPLIT_TO_ARRAY ( string,delimiter )

SPLIT (<string>, <separator>)

Notes: Redshift allows missing delimiters; Snowflake requires them, defaulting to comma

SUBARRAY ( super_expr, start_position, length )

ARRAY_SLICE ( <array> , <from> , <to> )

Notes: Function names and the second argument differ; adjust arguments for equivalence.

Conditional expressions

Redshift

Snowflake

DECODE

DECODE

Notes: the results may vary between platforms (See SSC-FDM-PG0013).

COALESCE ( expression, expression, … )

COALESCE ( expression, expression, … )

GREATEST ( value [, …] )

GREATEST_IGNORE_NULLS ( <expr1> [, <expr2> … ] )

LEAST ( value [, …] )

LEAST_IGNORE_NULLS ( <expr1> [, <expr2> … ])

NVL( expression, expression, … )

NVL ( expression, expression )

Notes: Redshift’s NVL accepts multiple arguments; Snowflake’s NVL accepts only two. To match Redshift behavior, NVL with more than two arguments is converted to COALESCE.

NVL2

NVL2

NULLIF

NULLIF

Notes: Redshift’s NULLIF ignores trailing spaces in some string comparisons, unlike Snowflake. Therefore, the transformation adds RTRIM for equivalence.

Data type formatting functions

Data type formatting functions provide an easy way to convert values from one data type to another. For each of these functions, the first argument is always the value to be formatted and the second argument contains the template for the new format. (Redshift SQL Language Reference Data type formatting functions).

Redshift

Snowflake

TO_CHAR

TO_CHAR

Notes: Snowflake’s support for this function is partial (see SSC-EWI-0006).

TO_DATE

TO_DATE

Notes: Snowflake’s TO_DATE fails on invalid dates like ‘20010631’ (June has 30 days), unlike Redshift’s lenient TO_DATE. Use TRY_TO_DATE in Snowflake to handle these cases by returning NULL. (see SSC-FDM-RS0004, SSC-EWI-0006, SSC-FDM-0032).

Date and time functions

Redshift

Snowflake

ADD_MONTHS

ADD_MONTHS

Notes: the results may vary between platforms (See SSC-FDM-PG0013).

AT TIME ZONE ‘timezone’

CONVERT_TIMEZONE ( <source_tz> , <target_tz> , <source_timestamp_ntz> )


CONVERT_TIMEZONE ( <target_tz> , <source_timestamp> )

Notes: Redshift defaults to UTC; the Snowflake function requires explicit UTC specification. Therefore, it will be added as the target timezone.

CONVERT_TIMEZONE

CONVERT_TIMEZONE

CURRENT_DATE

CURRENT_DATE()

DATE

DATE

DATEADD/DATE_ADD ( datepart, interval, {date | time | timetz | timestamp} )

DATE_ADD ( <date_or_time_part>, <value>, <date_or_time_expr> )

Notes: Invalid date part formats are translated to Snowflake-compatible formats.

DATEDIFF/DATE_DIFF

DATEDIFF

Notes: Invalid date part formats are translated to Snowflake-compatible formats.

DATE_PART/PGDATE_PART

DATE_PART

Notes: this function is partially supported by Snowflake. (See SSC-EWI-OOO6).

DATE_PART_YEAR (date)

YEAR ( <date_or_timestamp_expr> )

Notes: the results may vary between platforms (See SSC-FDM-PG0013).

DATE_TRUNC

DATE_TRUNC

Notes: Invalid date part formats are translated to Snowflake-compatible formats.

GETDATE()

GETDATE()

LAST_DAY

LAST_DAY

Notes: the results may vary between platforms (See SSC-FDM-PG0013).

NEXT_DAY

NEXT_DAY

Notes: the results may vary between platforms (See SSC-FDM-PG0013).

SYSDATE

SYSDATE()

TIMESTAMP

TO_TIMESTAMP

TRUNC

TRUNC

EXTRACT

EXTRACT

Notes: Part-time or Date time supported: DAY, DOW, DOY, EPOCH, HOUR, MINUTE, MONTH, QUARTER, SECOND, WEEK, YEAR.

Note

Redshift timestamps default to microsecond precision (6 digits); Snowflake defaults to nanosecond precision (9 digits). Adjust precision as needed using ALTER SESSION (e.g., ALTER SESSION SET TIMESTAMP_OUTPUT_FORMAT = 'YYYY-MM-DD HH24:MI:SS.FF2';). Precision loss may occur depending on the data type used.

Since some formats are incompatible with Snowflake, adjusting the account parameters DATE_INPUT_FORMAT or TIME_INPUT_FORMAT might maintain functional equivalence between platforms.

Hash Functions

A hash function is a mathematical function that converts a numerical input value into another value. (Redshift SQL Language Reference Hash functions).

Redshift

Snowflake

FNV_HASH (value [, seed])

HASH ( <expr> [ , <expr> … ]

JSON Functions

Redshift

Snowflake

JSON_EXTRACT_PATH_TEXT

JSON_EXTRACT_PATH_TEXT

Notes:

  1. Redshift treats newline, tab, and carriage return characters literally; Snowflake interprets them.
  2. A JSON literal and dot-separated path are required to access nested objects in the Snowflake function.
  3. Paths with spaces in variables must be quoted.

Math functions

Redshift

Snowflake

ACOS

ACOS

ASIN

ASIN

ATAN

ATAN

ATAN2

ATAN2

CBRT

CBRT

CEIL/CEILING

CEIL

COS

COS

COT

COT

DEGREES

DEGREES

DEXP

EXP

DLOG1/LN

LN

DLOG10 (number)

LOG (10, number)

EXP

EXP

FLOOR

FLOOR

LOG

LOG

MOD

MOD

PI

PI

POWER/POW

POWER/POW

RADIANS

RADIANS

RANDOM

RANDOM

ROUND

ROUND

SIN

SIN

SIGN

SIGN

SQRT

SQRT

TAN

TAN

TRUNC

TRUNC

Note

Redshift and Snowflake results may differ in scale.

String functions

String functions process and manipulate character strings or expressions that evaluate to character strings. (Redshift SQL Language Reference String functions).

Redshift

Snowflake

ASCII

ASCII

BTRIM

TRIM

CHAR_LENGTH

LENGTH

CHARACTER_LENGTH

LENGTH

CHARINDEX

CHARINDEX

CHR

CHR

CONCAT

CONCAT

INITCAP

INITCAP

LEFT/RIGHT

LEFT/RIGHT

Notes: For negative lengths in LEFT/RIGHT, Snowflake returns an empty string; Redshift raises an error.

LEN

LEN

LOWER

LOWER

OCTET_LENGTH

OCTET_LENGTH

Notes: the results may vary between platforms (See SSC-FDM-PG0013).

QUOTE_IDENT (string)

CONCAT (‘”’, string, ‘”’)

REGEXP_REPLACE

REGEXP_REPLACE

Notes: This function includes a parameters argument that enables the user to interpret the pattern using the Perl Compatible Regular Expression (PCRE) dialect, represented by the p value, this is removed to avoid any issues. (See SSC-EWI-0009, SC-FDM-0032, SSC-FDM- PG0011).

REPEAT

REPEAT

REPLACE

REPLACE

REPLICATE

REPEAT

REVERSE

REVERSE

SOUNDEX

SOUNDEX

Notes: Certain special characters, the results may vary between platforms (See SSC-FDM-PG0013).

SPLIT_PART

SPLIT_PART

Notes: Snowflake and Redshift handle SPLIT_PART differently with case-insensitive collations.

STRPOS (string, substring )

POSITION ( <expr1> IN <expr> )

SUBSTRING

SUBSTRING

Notes: Snowflake partially supports this function. Redshift’s SUBSTRING, with a non-positive start_position, calculates start_position + number_characters (returning ‘’ if the result is non-positive). Snowflake’s behavior differs. (See SSC-EWI-RS0006).

TEXTLEN

LENGTH

TRANSLATE

TRANSLATE

TRIM

TRIM

Notes: Redshift uses keywords (BOTH, LEADING, TRAILING) for trim; Snowflake uses TRIM, LTRIM, RTRIM.

UPPER

UPPER

SUPER type information functions

Redshift

Snowflake

IS_ARRAY

IS_ARRAY

Notes: the results may vary between platforms (See SSC-FDM-PG0013).

IS_BOOLEAN

IS_BOOLEAN

Notes: the results may vary between platforms (See SSC-FDM-PG0013).

Window functions

Redshift

Snowflake

AVG

AVG

Notes: AVG rounding/formatting can vary by data type between Redshift and Snowflake.

COUNT

COUNT

DENSE_RANK

DENSE_RANK

Notes: ORDER BY is mandatory in Snowflake; missing clauses are replaced with ORDER BY 1.

FIRST_VALUE

FIRST_VALUE

Notes: Snowflake needs ORDER BY; missing clauses get ORDER BY <expr>.

LAG

LAG

LAST_VALUE

LAST_VALUE

Notes: Snowflake needs ORDER BY; missing clauses get ORDER BY <expr>.

LEAD

LEAD

Notes: Redshift allows constant or expression offsets; Snowflake allows only constant offsets.

LISTAGG

LISTAGG

Notes: Redshift’s DISTINCT ignores trailing spaces (‘a ‘ = ‘a’); Snowflake’s does not. (See SSC-FDM-PG0013).

MEDIAN

MEDIAN

Notes: Snowflake does not allow the use of date types, while Redshift does. (See SSC-FDM-PG0013).

NTH_VALUE

NTH_VALUE

Notes: ORDER BY is mandatory in Snowflake; missing clauses are replaced with ORDER BY 1.

NTILE

NTILE

Notes: ORDER BY is mandatory in Snowflake; missing clauses are replaced with ORDER BY 1. (See SSC-FDM-PG0013).

PERCENT_RANK

PERCENT_RANK

Notes: ORDER BY is mandatory in Snowflake; missing clauses are replaced with ORDER BY 1.

PERCENTILE_CONT

PERCENTILE_CONT

Notes: Rounding varies between platforms.

PERCENTILE_DISC

PERCENTILE_DISC

RANK

RANK

RATIO_TO_REPORT

RATIO_TO_REPORT

Notes: the results may vary between platforms (See SSC-FDM-PG0013).

ROW_NUMBER

ROW_NUMBER

Notes: ORDER BY is mandatory in Snowflake; missing clauses are replaced with ORDER BY 1.

STDDEV_SAMP

STDDEV

VAR_SAMP

VARIANCE

Known Issues

  1. For more information about quoted identifiers in functions, click here.

IDENTITY

Description

The IDENTITY function is a system function that operates on a specified column of a table to determine the initial value for the identity. If the initial value is not available, it defaults to the value provided in the function. This will be translation to a Sequence in Snowflake.

Grammar Syntax

 "identity"(oid_id, oid_table_id, default)
Copy

Note

This function is no longer supported in Redshift. It uses the default value to define the identity and behaves like a standard identity column.

Sample Source Patterns

Input Code:

Redshift
 CREATE TABLE IF NOT EXISTS table_test
(
    id integer,
    inventory_combo BIGINT  DEFAULT "identity"(850178, 0, '5,3'::text)
);

INSERT INTO table_test (id) VALUES
    (1),
    (2),
    (3),
    (4);

SELECT * FROM table_test;
Copy
Results

id

inventory_combo

1

5

2

8

3

11

3

14

Output Code:

Snowflake
 CREATE TABLE IF NOT EXISTS table_test
(
    id integer,
    inventory_combo BIGINT IDENTITY(5,3) ORDER
)
COMMENT = '{ "origin": "sf_sc", "name": "snowconvert", "version": {  "major": 0,  "minor": 0,  "patch": "0" }, "attributes": {  "component": "redshift",  "convertedOn": "11/13/2024",  "domain": "test" }}';

INSERT INTO table_test (id) VALUES
    (1),
    (2),
    (3),
    (4);

SELECT * FROM
    table_test;
Copy
Results

id

inventory_combo

1

5

2

8

3

11

3

14

Related EWIs

There are no known issues.

TO_CHAR

Date function

Description

TO_CHAR converts a timestamp or numeric expression to a character-string data format. (Redshift SQL Language Reference TO_CHAR function)

Warning

This function is partially supported in Snowflake.

For more information about quoted identifiers in functions, click here.

Grammar Syntax

 TO_CHAR(timestamp_expression | numeric_expression , 'format')
Copy

Sample Source Patterns

Input Code:

Redshift

 SELECT TO_CHAR(timestamp '2009-12-31 23:15:59', 'YYYY'),
       TO_CHAR(timestamp '2009-12-31 23:15:59', 'YYY'),
       TO_CHAR(timestamp '2009-12-31 23:15:59', 'TH'),
       "to_char"(timestamp '2009-12-31 23:15:59', 'MON-DY-DD-YYYY HH12:MIPM'),
       TO_CHAR(125.8, '999.99'),
       "to_char"(125.8, '999.99');
Copy
Results

TO_CHAR

TO_CHAR

TO_CHAR

TO_CHAR

TO_CHAR

2009

009

DEC-THU-31-2009 11:15PM

125.80

125.80

Output Code:

Snowflake
 SELECT
       TO_CHAR(timestamp '2009-12-31 23:15:59', 'YYYY'),
       PUBLIC.YEAR_PART_UDF(timestamp '2009-12-31 23:15:59', 3),
       TO_CHAR(timestamp '2009-12-31 23:15:59', 'TH') !!!RESOLVE EWI!!! /*** SSC-EWI-0006 - TH FORMAT MAY FAIL OR MAY HAVE A DIFFERENT BEHAVIOR IN SNOWFLAKE. ***/!!!,
       PUBLIC.MONTH_SHORT_UDF(timestamp '2009-12-31 23:15:59', 'uppercase') || '-' || PUBLIC.DAYNAME_SHORT_UDF(timestamp '2009-12-31 23:15:59', 'uppercase') || TO_CHAR(timestamp '2009-12-31 23:15:59', '-DD-YYYY HH12:MI') || PUBLIC.MERIDIAN_INDICATORS_UDF(timestamp '2009-12-31 23:15:59', 'uppercase'),
       TO_CHAR(125.8, '999.99'),
       TO_CHAR(125.8, '999.99');
Copy
Results

TO_CHAR

TO_CHAR

2009

Dec-Thu-31-2009 11:15PM

Known Issues

No issues were found.

Related EWIs

  • SSC-EWI-0006: The current date/numeric format may have a different behavior in Snowflake.

For datetime values

Translation specification for the TO_CHAR function when transforming date or timestamp values to string

Description

The following format strings apply to functions such as TO_CHAR. These strings can contain datetime separators (such as ‘-’, ‘/’, or ‘:’) and the following “dateparts” and “timeparts”. (Redshift Datetime format strings reference page)

Grammar Syntax

TO_CHAR (timestamp_expression, 'format')

Copy

The following table specifies the mapping of each format element to Snowflake:

Redshift

Snowflake

BC, AD, bc, ad (upper and lowercase era indicators)

PUBLIC.ERA_INDICATORS_UDF

B.C,. A.D., b.c., a.d. (upper and lowercase era indicators with points)

PUBLIC.ERA_INDICATORS_WITH_POINTS_UDF

CC

PUBLIC.CENTURY_UDF

YYYY and YY

Directly supported

YYY and Y

PUBLIC.YEAR_PART_UDF

Y,YYY

PUBLIC.YEAR_WITH_COMMA_UDF

IYYY

YEAROFWEEKISO

I, IY, IYY

PUBLIC.ISO_YEAR_PART_UDF

Q

QUARTER

MONTH, Month, month

PUBLIC.FULL_MONTH_NAME_UDF

MON, Mon, mon

PUBLIC.MONTH_SHORT_UDF

RM, rm

PUBLIC.ROMAN_NUMERALS_MONTH_UDF

W

PUBLIC.WEEK_OF_MONTH_UDF

WW

PUBLIC.WEEK_NUMBER_UDF

IW

WEEKISO

DAY, Day, day

PUBLIC.DAYNAME_LONG_UDF

DY, Dy, dy

PUBLIC.DAYNAME_SHORT_UDF

DDD

DAYOFYEAR

IDDD

PUBLIC.DAY_OF_YEAR_ISO_UDF

D

PUBLIC.DAY_OF_WEEK_UDF

Notes: For this UDF to work correctly the Snowflake session parameter WEEK_START should have its default value (0).

ID

DAYOFWEEKISO

J

PUBLIC.JULIAN_DAY_UDF

HH24

Directly supported

HH

HH12

HH12

Directly supported

MI

Directly supported

SS

Directly supported

MS

FF3

US

FF6

AM, PM, am, pm (upper and lowercase meridian indicators)

PUBLIC.MERIDIAN_INDICATORS_UDF

A.M., P.M., a.m., p.m. (upper and lowercase meridian indicators with points)

PUBLIC.MERIDIAN_INDICATORS_WITH_POINTS_UDF

TZ and tz

UTC and utc

Notes: According to the redshift documentation, all timestamp with time zone are stored in UTC, which causes this format element to return a fixed result.

OF

+00

Notes: According to the redshift documentation, all timestamp with time zone are stored in UTC, which causes this format element to return a fixed result.

SSSS

PUBLIC.SECONDS_PAST_MIDNIGHT

SP

Notes: This is a PostgreSQL template pattern modifier for “spell mode”, however it does nothing on Redshift, so it is removed from the output.

FX

Notes: This is another template pattern modifier for “fixed format”, however it has no use on the TO_CHAR function so it is removed.

Sample Source Patterns

Direct format elements transformation (no functions/UDFs)

The result is preserved as a single TO_CHAR function

Redshift
Query
 SELECT TO_CHAR('2013-10-03 13:50:15.456871'::TIMESTAMP, 'DD/MM/YY HH:MI:SS.MS') AS col1;
Copy
Result
+----------------------+
|col1                  |
+----------------------+
|03/10/13 01:50:15.456 |
+----------------------+

Copy
Snowflake
Query
 SELECT TO_CHAR('2013-10-03 13:50:15.456871'::TIMESTAMP, 'DD/MM/YY HH12:MI:SS.FF3') AS col1;
Copy
Result
+----------------------+
|col1                  |
+----------------------+
|03/10/13 01:50:15.456 |
+----------------------+

Copy

Format transformation using functions/UDFs

The result is a concatenation of multiple TO_CHAR, UDFs and Snowflake built-in functions that generate the equivalent string representation of the datetime value

Redshift
Query
 SELECT TO_CHAR(DATE '2025-07-05', '"Today is " Month DAY DD, "it belongs to the week " IW') AS result;
Copy
Result
+-------------------------------------------------------------+
|result                                                       |
+-------------------------------------------------------------+
|Today is  July      SATURDAY  05, it belongs to the week  27 |
+-------------------------------------------------------------+

Copy
Snowflake
Query
 SELECT
    'Today is ' ||
    TO_CHAR(DATE '2025-07-05', ' ') ||
    PUBLIC.FULL_MONTH_NAME_UDF(DATE '2025-07-05', 'firstOnly') ||
    ' ' ||
    PUBLIC.DAYNAME_LONG_UDF(DATE '2025-07-05', 'uppercase') ||
    TO_CHAR(DATE '2025-07-05', ' DD, ') ||
    'it belongs to the week ' ||
    TO_CHAR(DATE '2025-07-05', ' ') ||
    WEEKISO(DATE '2025-07-05') AS result;
Copy
Result
+-------------------------------------------------------------+
|result                                                       |
+-------------------------------------------------------------+
|Today is  July      SATURDAY  05, it belongs to the week  27 |
+-------------------------------------------------------------+

Copy

Quoted text

Format elements in double quoted text are added to the output directly without interpreting them, escaped double quotes are transformed to their Snowflake escaped equivalent.

Redshift
Query
 SELECT
    TO_CHAR(DATE '2025-01-16', 'MM "TESTING DD" DD') AS result1,
    TO_CHAR(DATE '2025-01-16', 'MM TESTING \\"DD\\" DD') AS result2,
    TO_CHAR(DATE '2025-01-16', 'MM "TESTING \\"DD\\"" DD') AS result3;
Copy
Result
+-----------------+-------------------+-------------------+
|result1          |result2            |result3            |
+-----------------+-------------------+-------------------+
|01 TESTING DD 16 |01 TEST5NG "16" 16 |01 TESTING "DD" 16 |
+-----------------+-------------------+-------------------+

Copy
Snowflake
Query
 SELECT
    TO_CHAR(DATE '2025-01-16', 'MM ') || 'TESTING DD' || TO_CHAR(DATE '2025-01-16', ' DD') AS result1,
    TO_CHAR(DATE '2025-01-16', 'MM TEST') || PUBLIC.ISO_YEAR_PART_UDF(DATE '2025-01-16', 1) || TO_CHAR(DATE '2025-01-16', 'NG ""DD"" DD') AS result2,
    TO_CHAR(DATE '2025-01-16', 'MM ') || 'TESTING "DD"' || TO_CHAR(DATE '2025-01-16', ' DD') AS result3;
Copy
Result
+-----------------+-------------------+-------------------+
|result1          |result2            |result3            |
+-----------------+-------------------+-------------------+
|01 TESTING DD 16 |01 TEST5NG "16" 16 |01 TESTING "DD" 16 |
+-----------------+-------------------+-------------------+

Copy

Known Issues

Template pattern modifiers not supported

The following format template modifiers:

  • FM (fill mode)

  • TH and th (uppercase and lowercase ordinal number suffix)

  • TM (translation mode)

Are not supported, including them in a format will generate SSC-EWI-0006

Input code:

 SELECT TO_CHAR(CURRENT_DATE, 'FMMonth'),
TO_CHAR(CURRENT_DATE, 'DDTH'),
TO_CHAR(CURRENT_DATE, 'DDth'),
TO_CHAR(CURRENT_DATE, 'TMMonth');
Copy

Output code:

 SELECT
TO_CHAR(CURRENT_DATE(), 'FM') || PUBLIC.FULL_MONTH_NAME_UDF(CURRENT_DATE(), 'firstOnly') !!!RESOLVE EWI!!! /*** SSC-EWI-0006 - FMMonth FORMAT MAY FAIL OR MAY HAVE A DIFFERENT BEHAVIOR IN SNOWFLAKE. ***/!!!,
TO_CHAR(CURRENT_DATE(), 'DDTH') !!!RESOLVE EWI!!! /*** SSC-EWI-0006 - DDTH FORMAT MAY FAIL OR MAY HAVE A DIFFERENT BEHAVIOR IN SNOWFLAKE. ***/!!!,
TO_CHAR(CURRENT_DATE(), 'DDth') !!!RESOLVE EWI!!! /*** SSC-EWI-0006 - DDth FORMAT MAY FAIL OR MAY HAVE A DIFFERENT BEHAVIOR IN SNOWFLAKE. ***/!!!,
TO_CHAR(CURRENT_DATE(), 'TM') || PUBLIC.FULL_MONTH_NAME_UDF(CURRENT_DATE(), 'firstOnly') !!!RESOLVE EWI!!! /*** SSC-EWI-0006 - TMMonth FORMAT MAY FAIL OR MAY HAVE A DIFFERENT BEHAVIOR IN SNOWFLAKE. ***/!!!;
Copy

Format parameter passed through variable

When the format parameter is passed as a variable instead of a string literal, the transformation of format elements can not be applied, an FDM will be added to the uses of the function warning about it.

Input code:

 SELECT TO_CHAR(d, 'YYYY/MM/DD'),
TO_CHAR(d, f)
FROM (SELECT TO_DATE('2001-01-01','YYYY-MM-DD') as d, 'DD/MM/YYYY' as f);
Copy

Output code:

 SELECT TO_CHAR(d, 'YYYY/MM/DD'),
--** SSC-FDM-0032 - PARAMETER 'format_string' IS NOT A LITERAL VALUE, TRANSFORMATION COULD NOT BE FULLY APPLIED **
TO_CHAR(d, f)
FROM (SELECT TO_DATE('2001-01-01','YYYY-MM-DD') as d, 'DD/MM/YYYY' as f);
Copy

Related EWIs

  1. SSC-EWI-0006: The current date/numeric format may have a different behavior in Snowflake.

  2. SSC-FDM-0032: Parameter is not a literal value, transformation could not be fully applied