modin.pandas.Series.isin¶
- Series.isin(values: Union[set, list, tuple, ndarray]) Series [source]¶
Whether elements in Series are contained in values.
Return a boolean Series showing whether each element in the Series matches an element in the passed sequence of values exactly.
- Parameters:
values (set or list-like) – The sequence of values to test. Passing in a single string will raise a
TypeError
. Instead, turn a single string into a list of one element.- Returns:
Series of booleans indicating if each element is in values.
- Return type:
- Raises:
TypeError –
If values is a string
See also
DataFrame.isin
Equivalent method on DataFrame.
Examples
>>> s = pd.Series(['llama', 'cow', 'llama', 'beetle', 'llama', ... 'hippo'], name='animal') >>> s.isin(['cow', 'llama']) 0 True 1 True 2 True 3 False 4 True 5 False Name: animal, dtype: bool
To invert the boolean values, use the
~
operator:>>> ~s.isin(['cow', 'llama']) 0 False 1 False 2 False 3 True 4 False 5 True Name: animal, dtype: bool
Passing a single string as
s.isin('llama')
will raise an error. Use a list of one element instead:>>> s.isin(['llama']) 0 True 1 False 2 True 3 False 4 True 5 False Name: animal, dtype: bool
Strings and integers are distinct and are therefore not comparable:
>>> pd.Series([1]).isin(['1']) 0 False dtype: bool >>> pd.Series([1.1]).isin(['1.1']) 0 False dtype: bool
Note
See pandas API documentation for pandas.Series for more.